Guillain-Barré Syndrome

Seema Yasmin, MD

EIS Field Assignments Branch Arizona Department of Health Services

Arizona Department of Health Services

Office of Surveillance, Epidemiology, and Laboratory Services Scientific Education and Professional Development Program Office

Objectives

- Pathophysiology of Guillain Barré Syndrome (GBS)
- Epidemiology
- Signs and symptoms
- Review of GBS subtypes
- Diagnosis, treatment, prognosis
- Outbreaks

Definition

- First described in 1916
- Acute flaccid paralysis, areflexia, ^protein in CSF
- □ Flaccid: Voluntary control over muscles has been lost → limp, floppy muscles
- Commonest cause of acute flaccid paralysis

Epidemiology

• 0.9–1.9/100,000 persons

Incidence differs with age

- <30 yrs: <1/100,000</p>
- >75 yrs:>4/100,000

20% increase with every 10-year rise in age

Male to female ratio – 1.2–1.5:1

Pathophysiology

Multiple Sclerosis Trust, UK

Pathophysiology

Pathophysiology

Nervous System

Central nervous system

Brain and spinal cord

Peripheral nervous system

- Somatic voluntary
- Autonomic involuntary

 GBS affects the 2 components of the peripheral nervous system

Neurology Definitions

Paralysis – loss of voluntary muscle function

- Partial affecting one muscle or one limb
- Total paralysis of all muscles

Plegia – used to describe paralysis

Palsy – not used anymore except for 'Bell's palsy'

Paresis – weakness of voluntary movement

Neurology Definitions

Hemi – arm, leg, trunk on the same side of the body

- Hemiplegia total paralysis on one side of the body
- Hemiparesis weakness on one side of the body

Para – either both arms or both legs

Quadri – all 4 limbs and torso Quadriplegia is the same as tetraplegia

Paresthesia – tingling, burning, numb sensation

Variants

Autoantibodies (usually IgG) attack gangliosides

Part of the cell membrane involved in signal transduction

N Engl J Med 2012; 366:2294-2304

Five Variants of GBS

Subtypes and variants	IgG autoantibodies to
Guillain–Barré syndrome	
Acute inflammatory demyelinating polyneuropathy	None
Facial variant: Facial diplegia and paresthesia	None
Acute motor axonal neuropathy	GM1, GD1a
More and less extensive forms	
Acute motor-sensory axonal neuropathy	GM1, GD1a
Acute motor-conduction-block neuropathy	GM1, GD1a
Pharyngeal-cervical-brachial weakness	GT1a > GQ1b >> GD1a
Miller Fisher syndrome	GQ1b, GT1a
Incomplete forms	
Acute ophthalmoparesis (without ataxia)	GQ1b, GT1a
Acute ataxic neuropathy (without ophthalmoplegia)	GQ1b, GT1a
CNS variant: Bickerstaff's brain-stem encephalitis	GQ1b, GT1a

Geographic Distribution of GBS Subtypes

Demyelinating

Autoantibodies attack the myelin sheath

Axonal

Autoantibodies attack nerve axon

Geographic Distribution of GBS Subtypes

Demyelinating

- Autoantibodies attack the myelin sheath
- 90% of all cases in Europe and North America
- 22-46% of cases in China, Japan, Bangladesh, Mexico

Axonal

Autoantibodies attack nerve axon

Geographic Distribution of GBS Subtypes

Demyelinating

- Autoantibodies attack the myelin sheath
- 90% of all cases in Europe and North America
- 22-46% of cases in China, Japan, Bangladesh, Mexico

Axonal

- Autoantibodies attack nerve axon
- 30-65% of all cases in China, Japan, Bangladesh, Mexico

Guillain Barré Syndrome

- Acute, ascending paralysis
- Decreased or absent reflexes
- Elevated protein in the CSF but normal cell count

Autoantibodies to myelin sheath or axon of nerve cells

5 variants

Acute Inflammatory Demyelinating Polyneuropathy (AIDP)

- Commonest variant of GBS in North America, Europe
- Paresthesias in distal limbs before weakness
- Ascending paralysis, progressive weakness
 - Bilateral, symmetrical
 - At presentation, 60% of patients have weakness in all 4 limbs
 - >60% unable to walk independently when maximum weakness is reached
- Respiratory weakness
 - Presenting symptom in 40% of patients
- Autonomic dysfunction
 - Postural hypotension \rightarrow syncope
 - Sinustachycardia

Miller Fisher

- Occurs in 5% of GBS cases
- Classic triad of ophthalmoplegia, ataxia and areflexia
- Presenting complaint usually diplopia
- Elevated CSF protein but less than other types of GBS

Acute Motor Axonal Neuropathy (AMAN)

- Acute/subacute paralysis or paresis without any sensory loss
- Loss of reflexes
- Facial/oropharyngeal muscle weakness
- Associated with Campylobacter jejuni gastric enteritis
 - >60% seropositive

Aetiology of GBS: Triggering Event

>60% of cases preceded by upper respiratory tract infection or diarrhea 3 days-6 weeks prior to symptoms

Campylobacter jejuni most frequently identified infectious agent (30%)

Incidence: 0.25–0.65/1000 cases of *C.jejuni*

Cytomegalovirus (10%)

Epstein-Barr virus, varicella-zoster, Mycoplasma pneumoniae

Immunizations and GBS

Little evidence to support a causal association with most vaccines

 Older formulations of rabies vaccine cultured in mammalian brain tissue (Semple)

Swine flu vaccine 1976–77

Time Course

Pain 2 weeks after triggering event

Weakness worsens over 2 weeks

Symptoms plateau at 4 weeks

Recovery begins

Differential Diagnosis

Acute peripheral neuropathies

- Toxic: thallium, arsenic, lead, n-hexane, organophosphate
- Drugs: amiodarone, perhexiline, gold
- Alcohol
- Porphyria
- Systemic vasculitis
- Poliomyelitis
- Diphtheria
- Tick paralysis

Differential Diagnosis

Disorders of Neuromuscular Transmission

- Botulism
- Myasthenia gravis

Central Nervous System Disorders

- Basilar artery occlusion
- Acute cervical transverse myelitis

Diagnosis

History

Examination

Lumbar puncture

Elevated CSF protein *without* pleocytosis

Nerve and muscle function tests

- Electromyography is muscle weakness due to the muscle itself?
- Nerve conduction studies

Case Definition

2. Clinical case definitions: Guillain-Barré syndrome (GBS)^{3,4,5}

Level 1 of diagnostic certainty

- Bilateral AND flaccid weakness of the limbs^{6,7,8} AND
- Decreased or absent deep tendon reflexes in weak limbs⁹ AND
- Monophasic illness pattern¹⁰ AND interval between onset and nadir of weakness between 12 h and 28 days AND subsequent clinical plateau¹¹
 - AND
- Electrophysiologic findings consistent with GBS¹² AND
- Cytoalbuminologic dissociation (i.e., elevation of CSF protein level above laboratory normal value AND CSF total white cell count <50 cells/µl)¹³ AND
- Absence of an identified alternative diagnosis for weakness (see Appendix A.3)³.

Level 2 of diagnostic certainty

- Bilateral AND flaccid weakness of the limbs^{6,7,8} AND
- Decreased or absent deep tendon reflexes in weak limbs⁹

AND

 Monophasic illness pattern¹⁰ AND interval between onset and nadir of weakness between 12 h and 28 days AND subsequent clinical plateau¹¹

AND

- CSF total white cell count <50 cells/µl (with or without CSF protein elevation above laboratory normal value)¹³ OR
- IF CSF not collected or results not available, electrophysiologic studies consistent with GBS¹² AND
- Absence of identified alternative diagnosis for weakness (see Appendix A.3)³.

Level 3 of diagnostic certainty

- Bilateral AND flaccid weakness of the limbs^{6,7,8} AND
- Decreased or absent deep tendon reflexes in weak limbs⁹ AND
- Monophasic illness pattern¹⁰ AND interval between onset and nadir of weakness between 12 h and 28 days AND subsequent clinical plateau¹¹

AND

 Absence of identified alternative diagnosis for weakness (see Appendix A.3)³.

Nerve Conduction Tests

Motor and sensory nerves

Nerve conduction velocity is measured

- Conduction slowing
- Conduction block

Fwaves and **H**reflexes

Prolonged or absent

Treatment

Supportive care

- Intubation
- Occupational therapy
- Physiotherapy
- Speech and language therapy

Specific therapy

- Intravenous immunoglobulins
- Plasmapheresis

Prognosis

Recovery starts at ~2–4 weeks after symptom onset

Monthsto years

20% unable to walk 6 months after symptom onset

Time to recovery depends on many factors

- Age
- Severity
- Delay in receiving treatment

Various prognostic scales

- Patient's age, presence/absence of antecedent diarrhea, severity
- Time between weakness onset and admission, facial weakness
- Complications of intubation
 - Pneumonia, sepsis, PE in 60%

Prognosis Depends on Subtype

AIDP

- 5% mortality
- >75% of patients have complete/near-complete recovery, no deficits or with mild residual fatigue and distal weakness

Miller Fisher

- Improvement begins at a median of 2 weeks
- Full recovery takes a median of 1-3 months

AMAN

Recovery time similar to or quicker than AIDP

GBS Surveillance

1976 influenza

- 40 million doses of influenza vaccine administered in US
- Cluster of GBS cases noted
- Vaccine associated with small, but statistically significant increased risk of GBS in 6 weeks post-vaccination

CDC Emerging Infections Program (EIP) 2009–10

- Active, population-based surveillance
- Connecticut, Maryland, New Mexico, Tennessee, New York, Minnesota
- Metropolitan areas in Georgia, Oregon, California, Colorado

Key Points

GBS characterised by:

- Muscle weakness or paralysis
- Loss of reflexes
- High protein in the CSF but a normal cell count

Not a single disease but a group of immune-mediated neuropathies

Autoantibodies against cell membrane gangliosides

Clusters are rare

ARTICLE | November 18, 1983

Simultaneous Outbreaks of Guillain-Barré Syndrome and Bell's Palsy in Hawaii in 1981

Jonathan E. Kaplan, MD; Joel R. Greenspan, MD; Mona Bomgaars, MD; Ned Wiebenga, MD; Robert D. Bart, Jr, MD; Kenneth Robbins, MD; Robert Wiebe, MD; Frank Tabrah, MD; John Stewart, MD; Lawrence B. Schonberger, MD

[+] Author Affiliations

JAMA. 1983;250(19):2635-2640. doi:10.1001/jama.1983.03340190037028

Text Size: A A A

Sim and	GUILLAIN-BARRÉ SYNDROME EPIDEMIOLOGY OF AN OUTBREAK
Jonathar Kenneth [+] Authc	SAMI A. KHOURY + Author Affiliations
<i>JAMA</i> . 1	Received July 1, 1977. Accepted November 29, 1977. A A
	Abstract In early January, 1976, an outbreak of gastroenteritis caused by contamination of the water supply system occurred in Salt, Jordan. This

Foodborne Pathog Dis. 2010 Aug;7(8):913-9.

Association study between an outbreak of Guillain-Barre syndrome in Jilin, China, and preceding Campylobacter jejuni infection.

Zhang M, Li Q, He L, Meng F, Gu Y, Zheng M, Gong Y, Wang P, Ruan F, Zhou L, Wu J, Chen L, Fitzgerald C, Zhang J.

Department of Diagnosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Abstract

From June to July 2007, 36 cases of Guillain-Barre syndrome (GBS) occurred in a township in north China. Serological study and bacteria culture were performed to investigate the association between preceding Campylobacter jejuni infection and this GBS outbreak. Anti-C. jejuni antibodies were found in significantly higher numbers of GBS patients (IgM 84%, IgG 87.5%) than in healthy inspection cases

in earry january, 1970, an outpreak or gastroenteritis caused by

contamination of the water supply system occurred in Salt, Jordan. This

in

2,

1

2n

nd in

ease

Guillain-Barre Syndrome Strikes AZ-

As Jil Zha Zha Dep Con Ab: Fro Chi pre sigi

First Posted: 07/27/11 02:48 PM ET Updated: 09/26/11 06:12 AM ET

Acknowledgments

Arizona Department of Health Services Ken Komatsu Cara Christ Shoana Anderson Joli Weiss

Maricopa County Department of Public Health Rebecca Sunenshine

> NCEZID, CDC Jim Sejvar

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention

and the second s

Office of Surveillance, Epidemiology, and Laboratory Services

Scientific Education and Professional Development Program Office

□ EXTRA SLIDES

Risk Factors

- Older age
- Male
- Recent gastrointestinal or respiratory infection
- Recent surgery
- History of lymphoma, lupus, AIDS