OBJECTIVES ... 4

I: CHIKUNGUNYA ... 5
 Chikungunya Ecology and Transmission ... 6
 Chikungunya Clinical Disease and Case Management 7
 Chikungunya Laboratory Testing ... 8
 Chikungunya Case Definitions .. 9
 Chikungunya Case Classification Algorithm .. 11

II: DENGUE ... 12
 Dengue Ecology and Transmission ... 14
 Dengue Clinical Disease and Case Management ... 14
 Dengue Laboratory Testing .. 17
 Dengue Case Definitions .. 19
 Dengue Case Classification Algorithm ... 23

III: ZIKA .. 24
 Zika Ecology and Transmission ... 26
 Zika Clinical Disease and Case Management ... 26
 Zika Laboratory Testing ... 27
 Zika Case Definitions ... 28
 Zika Virus Case Classification Algorithm ... 32
 Zika Virus Case Classification Algorithm ... 33
 Zika Virus Case Classification Algorithm ... 34

IV. CHIKUNGUNYA, DENGUE, AND ZIKA COMPARISON 35
 Recommendations for Healthcare Providers ... 36

V: PLANNING AND RESPONSE SCENARIOS .. 38
 Recommended Response Activities by Epidemiologic Scenario 40
OBJECTIVES

The goal of this document is to outline a preparation and response plan for emerging arboviral threats in Arizona. With the expansion of chikungunya, dengue, and Zika viruses into the Caribbean and Latin America, there is an increasing risk for travelers to return to Arizona infected with one of these viruses. All three of these diseases have potential for local transmission in Arizona, and this document was written in response to these encroaching threats.

This document includes detailed sections about chikungunya, dengue, and Zika background, clinical information, surveillance programs, and laboratory testing. The remainder of the handbook is applicable to prevention, investigation, and control of dengue, chikungunya, and Zika viruses. This includes suggested guidelines for public health officials, vector control agencies, and healthcare professionals. Points of contact and additional resources are also provided. This document was developed based on guidelines from the Pan American Health Organization (PAHO)/Centers for Disease Control and Prevention (CDC) Preparedness and Response for Chikungunya Virus Introduction in the Americas, the World Health Organization (WHO) Dengue Guidelines for Diagnosis, Treatment, Prevention and Control, and CDC’s Zika Interim Response Plan. Links to these documents are available in the references.

Thanks to all state and local partners who provided content or edits to this document.
I: CHIKUNGUNYA

Chikungunya fever is a mosquito-borne disease caused by a virus in the Alphavirus genus, Togaviridae family\(^1\)-\(^4\). Chikungunya virus is primarily transmitted by Aedes aegypti and Aedes albopictus mosquitoes, which can also transmit dengue, Zika, and yellow fever viruses\(^1\)-\(^5\). Beginning in 2004, chikungunya has caused large outbreaks in Africa, Asia, Indian Ocean islands, and in Italy\(^4\),\(^6\). Attack rates in these outbreaks ranged from 38-63\% and have reached over 500,000 cases in multiple outbreaks\(^4\),\(^6\).
In late 2013, the first cases of locally acquired chikungunya in the western hemisphere were reported among residents of St. Martin in the Caribbean\(^7,8\). The virus quickly began to spread across the Caribbean region, and locally acquired cases have been reported from North, Central, and South America\(^9\). Isolated cases of local transmission of chikungunya were reported in Florida and Texas during 2014 and 2015, respectively, but no locally-transmitted cases were reported in 2016\(^9\).

Two distinct lineages of chikungunya have been identified — the Indian Ocean lineage and the Asian lineage\(^3,8\). The Indian Ocean lineage is the strain currently circulating in the Americas, and has demonstrated less efficient transmission among *Aedes albopictus* mosquitoes than the Asian lineage\(^3,8\). This difference might indicate lower risk for transmission in areas with only *Aedes albopictus* mosquitoes\(^3,8\).

Chikungunya in Arizona

The introduction of chikungunya virus to the Americas increases the risk for disease importation to the United States. Arizona is at risk for local transmission of chikungunya virus because of the presence of *Ae. aegypti* mosquitoes\(^10\). Local transmission could occur if a person was infected while traveling, and then bitten by local mosquitoes of the appropriate species after returning\(^4\). This infected mosquito could then spread the virus to other people, who would be considered locally acquired cases\(^4\). Infected mosquitoes could also potentially travel across state or national borders, although this would be unlikely due to the short flight range of *Aedes aegypti*\(^11\). An epidemiological profile of chikungunya cases in Arizona from 2008 through 2016 is available in the Appendix.

A more detailed look at the *Aedes aegypti* vector in Arizona, and how to implement surveillance and control methods, are found in section VII of this document.

Chikungunya Ecology and Transmission

Reservoirs

Humans serve as the primary reservoir for chikungunya, but several other vertebrate species have been implicated as potential reservoirs, including non-human primates, rodents,
birds, and some small mammals. Animal reservoirs are not considered to play a significant role in transmission during outbreaks.

Incubation periods

- **Humans:** 3–7 days (range: 1–12) between the bite of an infected mosquito and when symptoms begin (intrinsic incubation).
- **Mosquitoes:** ~10 days, on average, between intake of an infected blood meal and when mosquitoes can transmit the virus to a naïve human host (extrinsic incubation).

Susceptibility

All persons not previously infected with chikungunya virus are at risk for infection and disease. This can occur anywhere where infected Aedes spp. mosquitoes are present. Due to the immunological naïveté of Arizona’s population, all areas with known populations of Aedes vector mosquitoes are considered at risk for local transmission. It is believed that once exposed, individuals will develop long-lasting protective immunity.

Chikungunya Clinical Disease and Case Management

A person who is bitten by an infected mosquito usually develops signs and symptoms of disease 3–7 days after the bite (range 1–12 days). Most individuals (73–97%) develop symptomatic infection; however, some remain asymptomatic. Chikungunya can cause acute, subacute, and chronic disease.

Acute chikungunya fever usually lasts 3–10 days and is characterized by a sudden onset of high fever (usually >102°F) and severe joint pain. Fever can last from several days up to a week, and is sometimes intermittent. Joint pain is usually symmetric, and most commonly seen in the hands and feet, but can manifest in other joints as well. Other signs and symptoms can include headache, diffuse back pain, myalgia, nausea, vomiting, polyarthritis, tenosynovitis, rash, and conjunctivitis. About 50% of patients develop a rash 2–5 days after fever onset. The rash is typically maculopapular and involves the trunk and extremities, but can also occur on the hands and feet. Fatalities are extremely rare (<1% of cases), but when they do occur it is often among the elderly, newborn, or those with comorbidities. Morbidity due to joint pain and swelling can be severe and impact the person’s ability to walk or return to work. These symptoms typically only last a few weeks, but in some cases have been shown to last for months or even years.

Abnormal laboratory findings can include thrombocytopenia, leukopenia, and elevated liver function tests.
Atypical manifestations of chikungunya can occur and include neurological, ocular, cardiovascular, dermatological, renal, or other complications1,2,4,6,12.

Treatment

Treatment for acute chikungunya fever is supportive therapy; however, healthcare providers should first exclude more serious conditions such as malaria, dengue, yellow fever, and bacterial infections that would require more specific treatment1,2,4,6,12. Nonsteroidal anti-inflammatory drugs (NSAIDs) and acetylsalicylic acid (Aspirin) should be avoided until dengue has been ruled out as possible diagnosis due to the risk of hemorrhagic complications and Reyes Syndrome1,2,4,6,12.

Chronic Chikungunya Infection

Patients with chikungunya often improve after the first 10 days of symptoms, but can experience symptom recurrence 2–3 months after initial infection4,12. This usually presents as various rheumatic symptoms including distal polyarthritis, exacerbation of pain in previously injured joints and bones, and tenosynovitis in wrists and ankles4. Vascular manifestations can occur, such as Raynaud’s syndrome4,6. Many patients also complain of general depression, fatigue, and weakness4. Study results vary, but have suggested that after 3 months, 80-93% of patients complain of chronic or recurrent symptoms4. After 10 months, 49% of patients will complain of chronic symptoms4. Between 18 months and 36 months, 12–18% of patients will complain of chronic symptoms4. Chronic symptoms appear to be more common among persons 65 years of age or older, with preexisting joint conditions, and who experienced more severe acute stage disease12.

Chikungunya Laboratory Testing

Laboratories

Several private commercial laboratories offer chikungunya testing. In addition, the Arizona State Public Health Laboratory (ASPHL) can perform polymerase chain reaction (PCR) and immunoglobulin (Ig) M Enzyme-linked immunosorbent assay (ELISA) testing for chikungunya virus14. If needed, testing can also be performed at the CDC Arboviral Disease Branch laboratory in Fort Collins, CO15.

Samples

Chikungunya testing is most commonly performed on blood or serum samples4,14,15; cerebrospinal fluid can be tested in patients with meningoencephalitic symptoms4. Additional testing can be performed on other specimens in rare cases (i.e., autopsy material following a suspect chikungunya death), but there is little information on the detection of virus by isolation or reverse transcriptase-polymerase chain reaction (RT-PCR) from tissue or organs4. Several methods are available for chikungunya virus diagnostic assays, and include the following:
Viral culture
RT-PCR
ELISA or immunofluorescence assay (IFA) for IgM or IgG antibodies
Plaque reduction neutralization tests (PRNT)
 - Not routinely performed for initial diagnosis
 - Results are more specific than ELISA/IFA results and are generally required to confirm diagnosis
Immunohistochemical staining (IHC)
 - Performed on tissues

For routine chikungunya virus diagnostic testing, serum specimens can be tested by RT-PCR and IgM antibody tests. To determine which test(s) are needed, identify the day after illness onset when the specimen is collected and use the following guidelines:

- 0–3 days: RT-PCR
- 4–6 days: both RT-PCR and IgM
- ≥7 days: IgM

Specimen Collection, Storage and Transportation
- Collect 4–5 ml of blood aseptically in a tube or a vial. Any serum separator vial is appropriate, such as a red top, orange top, or tiger top.
- Allow blood to clot at room temperature.
- Centrifuge blood at 2,000 rpm to separate serum, and then collect the serum in a clean dry vial.
- Samples should be frozen or refrigerated, depending on the testing laboratory’s recommendations.

Chikungunya Case Definitions
Chikungunya falls under the arboviral disease case definition, as defined by the Council of State and Territorial Epidemiologists (CSTE). CSTE divides arboviral infection case classifications in two categories; neuroinvasive or non-neuroinvasive. Because chikungunya is a predominantly non-neuroinvasive disease, we have only included the non-neuroinvasive criteria in this handbook. If a neuroinvasive disease is suspected, please see the complete arboviral disease case definition in the Arizona Case Definitions for Public Health Surveillance.

Clinical Criteria
A clinically compatible case of chikungunya is defined as follows:
- Fever or chills as reported by the patient or a healthcare provider, AND
- Absence of more likely clinical explanation, AND
Absence of neuroinvasive disease. Other clinically compatible symptoms including headache, myalgia, rash, arthralgia, vertigo, vomiting, paresis, and/or nuchal rigidity16,17

Laboratory Criteria for Diagnosis16,17

- Isolation of virus from, or demonstration of specific viral antigen or nucleic acid in, tissue, blood, CSF, or other body fluid, OR16,17
- Four-fold or greater change in virus-specific quantitative antibody titers in paired sera, OR16,17
- Virus-specific IgM antibodies in serum with confirmatory virus-specific neutralizing antibodies in the same or a later specimen, OR16,17
- Virus-specific IgM antibodies in cerebrospinal fluid (CSF) or serum16,17.

A confirmed case meets the above clinical criteria and one or more of the following laboratory criteria16,17:

- Isolation of virus from, or demonstration of specific viral antigen or nucleic acid in, tissue, blood, CSF, or other body fluid, OR16,17
- Four-fold or greater change in virus-specific quantitative antibody titers in paired sera, OR16,17
- Virus-specific IgM antibodies in serum with confirmatory virus-specific neutralizing antibodies in the same or a later specimen16,17.

A probable case meets the above clinical criteria and virus-specific IgM antibodies in serum but with no other testing16,17.
Chikungunya Case Classification Algorithm

1. Does the case have BOTH of the following?
 1. Fever or chills as reported by the patient or healthcare provider
 2. Absence of a more likely clinical explanation

 - Yes
 - Was the individual positive for chikungunya virus by PCR or virus isolation?
 - Yes
 - Was the individual positive for chikungunya IgM antibodies (detectable >5 days after illness onset)?
 - Yes
 - Confirmed Case
 - No
 - Probable Case
 - No/Unk
 - Not a Case
 - No
 - Was there a 4-fold increase in antibody titers in paired samples?
 - Yes
 - Confirmed Case
 - No/Unk
 - Probable Case
 - No
 - Not a Case

Suspect Case (must meet all 3 criteria)
1. Acute onset of fever
2. Severe arthralgia or arthritis (not explained by other medical conditions)
3. Reside in or visit epidemic or endemic areas within 2 weeks before symptom onset

Note: suspect cases remain suspect until case status is determined to be confirmed, probable, or ruled out
II: DENGUE

Dengue fever is a mosquito-borne disease in the flavivirus genus of the Flaviviridae family. It is primarily transmitted by Aedes aegypti and Aedes albopictus mosquitoes, which also transmit chikungunya and Zika viruses. These vectors are found throughout the world, and their abundance has aided in the geographic expansion of the virus. Dengue is expanding rapidly, and has had a 30-fold increase in incidence during 2000–2010. This includes increased disease incidence in endemic countries as well as encroachment into new countries and regions, such as the outbreak of locally-acquired cases of dengue occurred in Hawaii in 2015.

In many parts of the tropics and subtropics, dengue is endemic. However, dengue also has significant epidemic potential. In order for dengue to become endemic three factors are required:
A large population of Aedes aegypti or Aedes albopictus mosquitoes. Mosquito population growth can occur in response to increased rainfall or other environmental factors.

A human population immunologically naïve to one or more of the dengue serotypes.

Contact between the human population and the infected vector population, creating a cycle of human-mosquito-human transmission.

Dengue in Arizona

The increasing incidence and geographic distribution of dengue increases the likelihood for travel-associated cases to occur in Arizona. Arizona is also at risk for local transmission of dengue virus because of the presence of Ae. aegypti. Local transmission could occur if a traveler was infected in a dengue-endemic area, and then bitten by an Aedes spp. mosquito after returning to Arizona. Dengue-infected mosquitoes could also potentially travel across state or national borders. In 2014, locally acquired dengue cases in Sonora, Mexico were identified near the Arizona border region, and Sonora.
reported >3600 dengue cases. Due to this outbreak, a large increase in travel-associated dengue cases occurred among Arizona residents, with over 90 cases reported. An epidemiological profile of dengue cases in Arizona from 2008 through 2016 is available in the Appendix.

Aedes aegypti mosquitoes are established in Arizona. A more detailed look at the vectors of concern in Arizona, and how to perform surveillance and vector control, are found in section VII of this document.

Dengue Ecology and Transmission

Reservoirs
In endemic areas, dengue is maintained in a human-mosquito cycle. Sylvatic dengue strains are present in some area of Africa and Asia, which may occasionally spill-over and cause human infections.

Incubation period
- **Humans**: 4–7 days (range 3–14 days) between the bite of an infected mosquito and when symptoms begin (intrinsic incubation).
- **Mosquitoes**: 8–12 days between intake of a dengue infected blood meal and when mosquitoes can transmit the virus to a naïve human host (extrinsic incubation).

Dengue Serotypes
Dengue fever is caused by any of the dengue serotypes I–IV. Following infection, patients are protected from illness with the same serologic strain. Unfortunately, upon a second infection with a different serotype, severe disease manifestations such as shock and hemorrhagic disease manifestations are more likely to occur. This is attributable to the overreaction of the immune response to the dengue antigens. The co-circulation of multiple virus serotypes in an area is termed hyperendemicity, and is associated with epidemic severe dengue in a geographical area.

Dengue Clinical Disease and Case Management
The clinical manifestations of dengue fever can be divided into three phases: febrile phase, critical phase, and recovery phase.

Febrile Phase
Only about 1 out of every 4 people bitten by an infected mosquito will develop symptoms, which usually begin 4–7 days after exposure. Common symptoms include sudden high fever accompanied by facial flushing, rash, body aches, myalgia, arthralgia and
headache. Sore throat, anorexia, nausea and vomiting are also common. This phase usually last 2–7 days. Many symptoms during this period are non-specific, but a positive tourniquet test should increase suspicion for dengue infection. Patients should be monitored closely for warning signs of more severe disease. Mild hemorrhagic manifestations are not uncommon, and include petechial and mucosal membrane bleeding. Gastrointestinal bleeding or massive vaginal bleeding in women of childbearing age is also possible. The liver can be enlarged and tender during the febrile period.

Critical Phase

During the critical phase of illness (days 3–7), the patient’s fever often resolves concurrent with an increase in capillary permeability. This period of plasma leakage often lasts 24–48 hours. The level of capillary permeability determines disease progression and severity, and is highly variable. In more severe cases, this leads to pleural effusions and ascites. Shock occurs when a critical volume of plasma is lost through capillary leakage, and often coincides with a lowering of temperature, organ damage, metabolic acidosis, and disseminated intravascular coagulation or other coagulation abnormalities. The patient is considered in shock if their pulse pressure is ≤ 20 mm Hg. It is possible for patients to progress rapidly from the febrile phase to the critical phase without a drop in temperature, which is why patients should be monitored closely throughout the course of disease. A complete blood count can be used to determine the onset and severity of the critical phase and plasma leakage.

Recovery Phase

If the patient survives the critical phase, a 48–72 hour period of gradual reabsorption from the extravascular compartment fluid occurs. Patient wellbeing improves during this period. Bradycardia and electrocardiographic changes are common in this phase. It is important to avoid excessive fluid therapy, which is associated with pulmonary edema and congestive heart failure.
Phase	Duration	Clinical Concerns
Febrile\(^{20,21,23}\) | 2–7 days\(^{20,21,23}\) | Dehydration and high fever; fever can lead to neurological disturbances or seizures in children\(^{20,21,23}\)
Critical\(^{20,21,23}\) | 24–48 hours\(^{20,21,23}\) | Shock from plasma leakage, severe hemorrhage, organ impairment\(^{20,21,23}\)
Recovery\(^{20,21,23}\) | 48–72 hours\(^{20,21,23}\) | Hypervolemia (following excessive fluid therapy)\(^{20,21,23}\)

Monitoring and Treatment

Clinical interventions should change based on disease manifestations\(^{18–21,23}\). Vital signs, peripheral perfusion, urine output, hematocrit, blood glucose, and organ function should be monitored in the febrile stage for signs of clinical deterioration and warning signs of more severe disease\(^{18–21,23}\). Patients with critical phase signs including abdominal pain or tenderness, persistent vomiting, extravascular fluid accumulation (e.g., pleural or pericardial effusion, ascites), mucosal bleeding at any site, liver enlargement >2
centimeters, or increasing hematocrit concurrent with rapid decrease in platelet count should be closely monitored until the risk period is over18-21,23.

There is no specific treatment for dengue fever, but supportive therapy is essential18-21,23. Excessive fluid therapy should be avoided18-21,23. Additionally, non-steroidal anti-inflammatory drugs (NSAIDs) and acetylsalicylic acid (Aspirin) should be avoided as these drugs can exacerbate gastritis and worsen hemorrhagic disease manifestations18-21,23. For patients with signs of shock, hemorrhage, or organ impairment, hospitalization is required18-21,23. Fluid input and output should be carefully monitored20,21,23. Discharge criteria include no fever for 48 hours, clinical improvement (appetite and general wellbeing), increasing platelet counts, and stable hematocrit levels without intravenous fluids18-21,23. For more specific information, please see the WHO Dengue Guidelines for Diagnosis, Treatment, Prevention, and Control20.

Dengue Laboratory Testing

Laboratories
The Arizona State Public Health Laboratory (ASPHL) can perform PCR and IgM ELISA antibody testing for dengue virus14. This testing does not determine the serotype. Several commercial laboratories also perform dengue diagnostic testing. Additional testing can be performed at the CDC Dengue Branch laboratory, located in San Juan, Puerto Rico24. In general, samples should first be tested at a commercial lab, and then forwarded to the Arizona State Public Health Laboratory (ASPHL) for confirmatory testing.

Samples
Dengue virus is most commonly detected in blood, serum, or plasma, but tissues from affected organs can also be tested in severe or postmortem cases20,21. The following time periods after disease onset can be used to guide test selection.

- **0–3 days:** RT-PCR4,20,21,23
- **4–6 days:** both RT-PCR and IgM4,20,21,23
- **≥7 days:** IgM4,20,21,23

For patients with negative acute IgM results, and no PCR testing performed, convalescent phase serum should be collected 10–14 days after the first sample to identify a four-fold change in antibody titer or to definitively rule out the diagnosis20,21. Also, a single convalescent titer is sufficient for a probable case classification if no acute-phase specimen was collected17,25. IgM antibodies can persist for months after illness. A table of additional diagnostic method options is found below.
<table>
<thead>
<tr>
<th>Diagnostic Method</th>
<th>Specimen</th>
<th>Collection After Symptom Onset</th>
<th>Laboratory Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral isolation by cell culture<sup>17,20,25</sup></td>
<td>Whole blood, serum, plasma, CSF, tissues<sup>17,20,25</sup></td>
<td>1–5 days<sup>17,20,25</sup></td>
<td>Confirmed<sup>17,20,25</sup></td>
</tr>
<tr>
<td>Nucleic acid detection by RT-PCR or another molecular diagnostic test<sup>17,20,25</sup></td>
<td>Whole blood, plasma, serum, tissues, CSF<sup>17,20,25</sup></td>
<td>1–5 days<sup>17,20,25</sup></td>
<td>Confirmed<sup>17,20,25</sup></td>
</tr>
<tr>
<td>NS1 antigen detection by immunoassay<sup>17,20,25</sup></td>
<td>Serum or plasma<sup>17,20,25</sup></td>
<td>1–6 days<sup>17,20,25</sup></td>
<td>Confirmed<sup>17,20,25</sup></td>
</tr>
<tr>
<td>Antigen detection by immunofluorescence or immunohistochemistry<sup>17,20,25</sup></td>
<td>Tissue<sup>17,20,25</sup></td>
<td>N/A<sup>17,20,25</sup></td>
<td>Confirmed<sup>17,20,25</sup></td>
</tr>
<tr>
<td>IgM anti-DENV by validated immunoassay<sup>17,20,25</sup></td>
<td>Serum, plasma, whole blood, CSF<sup>17,20,25</sup></td>
<td>>3 days<sup>17,20,25</sup></td>
<td>Probable<sup>17,20,25</sup></td>
</tr>
<tr>
<td>IgG anti-DENV by validated immunoassay (paired sera)<sup>17,20,25</sup></td>
<td>Serum, plasma, whole blood<sup>17,20,25</sup></td>
<td>1–5 days and >15 days<sup>17,20,25</sup></td>
<td>Confirmed if >4-fold rise in titer<sup>17,20,25</sup></td>
</tr>
</tbody>
</table>
Specimen Collection, Storage and Transportation

1. Collect 4-5 ml of blood aseptically in a tube or a vial14,24.
 a. Any serum vial is appropriate, including red top, orange top or tiger top tubes14,24.

2. Allow blood to clot at room temperature14,24.

3. Centrifuge at 2,000 rpm to separate serum, and then collect the serum in a clean dry vial14,24.

4. Transport samples at 2–8 °C (NOT frozen, as hemolysis can interfere with serological testing)14,24.
 a. If specimens are frozen, virus isolation and molecular diagnosis are still possible14,24.
 b. If a delay of >24 hours is expected, the specimen should be separated and stored at a refrigerated temperature14,24.

Additional Testing

Diagnostic testing for dengue is necessary because of the non-specific signs and symptoms, and range of disease manifestations20,21,23. Antibody tests for dengue can cross-react with other flaviviruses, including West Nile virus, St. Louis encephalitis and Japanese encephalitis14,20,21,23. If the case is suspected to be locally acquired, West Nile virus and St. Louis encephalitis virus should be ruled out through comparison of plaque reduction neutralization (PRNT) test results14. RT-PCR can also be used for a confirmatory diagnosis if the specimen is collected early in the course of illness. If the case is travel-associated, other pathogens from the region where exposure occurred should be considered.

Dengue Case Definitions

The Council for State and Territorial Epidemiologists (CSTE) released new case definitions for dengue in early 201525. Based on the new case definitions, suspect dengue case should be assessed on two different criteria: clinical presentation and laboratory results/epidemiologic criteria17,25. Clinical presentation is divided into dengue-like illness, dengue, or severe dengue17,25. Case classifications as confirmed, probable, or suspect cases are based on the laboratory results and epidemiologic criteria17,25. Dengue cases can be classified as one of nine classifications17,25:...
Dengue Clinical Presentation Criteria

Dengue-like Illness
- Fever as reported by the patient or healthcare provider

Dengue
1. Fever
2. One or more of the following:
 - Nausea/vomiting
 - Rash
 - Aches and pains (headache, retro-orbital pain, joint pain, myalgia, arthralgia)
 - Tourniquet test positive
 - Leukopenia (total white blood cell count <5,000 mm3)
 - Any warning sign for severe dengue
 - Abdominal pain or tenderness
 - Persistent vomiting
 - Extravascular fluid accumulation (e.g., pleural or pericardial effusion, ascites)
 - Mucosal bleeding at any site
 - Liver enlargement >2 cm
 - Increasing hematocrit with rapid decrease in platelet count

Severe Dengue
- Dengue with any one or more of the following scenarios:
 - Severe plasma leakage evidenced by hypovolemic shock and/or extravascular fluid accumulation with respiratory distress
 - High hematocrit value for patient age and sex offers further evidence of plasma leakage
 - Severe bleeding from the gastrointestinal tract or vagina as defined by requirement for medical intervention, including intravenous fluid resuscitation or blood transfusion
 - Severe organ involvement, including any of the following:
 - Elevated liver transaminases: AST or ALT ≥1,000 U/L
 - Impaired level of consciousness and/or diagnosis of encephalitis, encephalopathy, or meningitis
 - Heart or other organ involvement including myocarditis, cholecystitis, and pancreatitis
Dengue Laboratory and Epidemiologic Criteria

A confirmed case is defined as having any one or more of the following:

- Detection of DENV nucleic acid in serum, plasma, blood, CSF, other body fluid or tissue by validated reverse transcriptase-polymerase chain reaction (PCR). OR
- Detection of DENV antigens in tissue by a validated immunofluorescence or immunohistochemistry assay. OR
- Detection in serum or plasma of DENV NS1 antigen by a validated immunoassay. OR
- Cell culture isolation of DENV from a serum, plasma, or CSF specimen. OR
- Detection of IgM anti-DENV by validated immunoassay in a serum specimen or CSF in a person living in a dengue endemic or non-endemic area of the United States without evidence of other flavivirus transmission (e.g., WNV, SLEV), or recent vaccination against a flavivirus (e.g., YFV, JEV). OR
- Detection of IgM anti-DENV in a serum specimen or CSF by validated immunoassay in a traveler returning from a dengue endemic area without ongoing transmission of another flavivirus (e.g., WNV, JEV, YFV), clinical evidence of co-infection with one of these flaviviruses, or recent vaccination against a flavivirus (e.g., YFV, JEV). OR
- IgM anti-DENV seroconversion by validated immunoassay in acute (i.e., collected <5 days of illness onset) and convalescent (i.e., collected >5 days after illness onset) serum specimens. OR
- IgG anti-DENV seroconversion or ≥4-fold rise in titer by a validated immunoassay in serum specimens collected >2 weeks apart, and confirmed by a neutralization test (e.g., plaque reduction neutralization test with a >4-fold higher end point titer as compared to other flaviviruses tested.

A probable case is defined as having any one or more of the following:

- Detection of IgM anti-DENV by validated immunoassay in a serum specimen or CSF in a person living in a dengue endemic or non-endemic area of the United States with evidence of other flavivirus transmission (e.g., WNV, SLEV), or recent vaccination against a flavivirus (e.g., YFV, JEV). OR
- Detection of IgM anti-DENV in a serum specimen or CSF by validated immunoassay in a traveler returning from a dengue endemic area with ongoing transmission of another flavivirus (e.g., WNV, JEV, YFV), clinical evidence of co-infection with one of these flaviviruses, or recent vaccination against a flavivirus (e.g., YFV, JEV).

A suspected case is defined as:

- The absence of IgM anti-DENV by validated immunoassay in a serum or CSF specimen collected <5 days after illness onset and in which molecular diagnostic testing was not performed in a patient with an epidemiologic linkage.

The person under investigation is not a case if there is no laboratory or epidemiological evidence* supporting the diagnosis.
Criteria for epidemiologic linkage

- Travel to a dengue endemic country or presence at location with ongoing outbreak within previous two weeks of onset of an acute febrile illness or dengue, OR
- Association in time and place (e.g., household member, family member, classmate, or neighbor) with a confirmed or probable dengue case.

To assist in classifying a potential dengue case, a case classification algorithm is found below.
Dengue Case Classification Algorithm

Start Here
- Does the individual have fever, as reported by the patient or healthcare provider?
 - Yes
 - No

No
- Insufficient Information
 - More diagnostic testing needed

Yes
- Were paired serum specimens collected at least 2 weeks apart?
 - Yes
 - No

No
- Was the specimen collected ≤5 days after illness onset, and no other diagnostic testing is available?
 - Yes
 - No

No
- Did the person have recent travel to a dengue-endemic area or association with a confirmed or probable case?
 - Yes
 - No

Yes
- Was a single IgM titer tested?
 - No
 - Yes

No
- IgM positive
 - No
 - Yes

IgM negative

Yes
- Was there a 4-fold or greater rise in titer (IgM or IgG) or seroconversion from negative to positive between 2 specimens?
 - Yes
 - No

No
- Confirmed Case
 - Probable Case
 - Suspect Case
 - Not a Case
Due to the nature of the rapidly evolving Zika outbreak in the Americas, information in this document is draft and subject to change. Please visit cdc.gov/zika or azhealth.gov/zika for updated guidance.

Zika virus is a single-stranded RNA virus of the Flaviviridae family that is primarily spread through the bite of an infected Aedes species mosquito24. The virus was first identified in 1947 from a Rhesus monkey in Uganda; however, the first outbreak in the Americas occurred in early 2015, when the virus was found in northeastern Brazil26,27. By the end of

\[\text{Digitally-colorized transmission electron micrograph of Zika virus. Viral particles are visible in red. (CDC)}\]
2016, Zika had spread to 75 countries and territories in Central America, South America, the Caribbean, and parts of African and Southeast Asia. Isolated local transmission was also reported in Florida and Texas during 2016. For more information about areas with Zika transmission, please see CDC’s webpage or the PAHO/WHO Zika webpage.

Zika in Arizona

The presence of Zika virus in the Americas greatly increases the likelihood for imported cases of Zika virus in Arizona. Local transmission of Zika virus from mosquitoes is possible due to abundant populations of Ae. aegypti in many parts of the state. However, imported cases of chikungunya and dengue virus in recent years have not led to local transmission of disease, and the probability of widespread locally acquired mosquito-borne disease is likely low. Travelers and residents are reminded to avoid mosquitoes both when traveling and in Arizona to reduce the risk of travel-associated disease from chikungunya, dengue, or Zika, as well mosquito-borne diseases in the state such as West Nile virus and St. Louis encephalitis virus. An epidemiological profile of Zika cases in Arizona from 2008 through 2016 is available in the Appendix.

Unlike chikungunya and dengue viruses, Zika transmission through sexual contact or congenital or perinatal infection is also a concern. Limited transmission in Arizona through these mechanisms is possible. To decrease this risk, pregnant women should avoid travel to Zika-affected areas during pregnancy, and women and men who are planning to conceive in the near future should consider avoiding nonessential travel to areas with risk of Zika. In addition, pregnant women and individuals with pregnant partners should abstain from sexual activity or correctly use condoms during sex with their pregnant partner for the duration of the pregnancy. More information about Zika and pregnancy is available here.
Zika Ecology and Transmission

Reservoirs
Zika virus has been shown to infect and cause disease in humans and non-human primates. Antibodies have also been detected in a variety of organisms, including rodents, birds, sheep, goats, cattle, horses, bats, ducks, and reptiles. However, humans are believed to have become the prominent host for the Asian lineage of Zika virus, and transmission can be sustained in a human-endemic cycle.

Incubation period
- **Humans:** 3-14 days between the bite of an infected mosquito and when symptoms begin (intrinsic incubation).
- **Mosquitoes:** ~10 days between intake of a Zika-infected blood meal and when mosquitoes can transmit the virus to a naïve human host (extrinsic incubation).

Zika Virus Strains
Two major lineages of Zika virus have been identified — the Asian strain and the African strain. The 2015-2016 Zika virus outbreak in the Americas was identified as the Asian strain.

Zika Clinical Disease and Case Management
The most common symptoms of Zika infection include acute onset of fever, maculopapular rash, arthralgia, and nonpurulent conjunctivitis, as well as myalgia and headache; however, nearly 80% of infected patients are asymptomatic. If symptoms occur, they are thought to occur 2-12 days after the bite of an infected mosquito and can last up to a week. Hospitalization is rarely required, and death from Zika complications is a rare occurrence. Current research suggests that Guillain-Barré syndrome (GBS) is associated with Zika virus infection; however, only a small proportion of infected individuals will develop GBS.

Testing for Zika virus should be considered among patients who traveled to or had unprotected sexual contact with someone who traveled to an area with Zika virus and have experienced symptoms of Zika virus infection. Asymptomatic pregnant women should be tested if there is ongoing exposure to Zika virus. Healthcare providers should contact the local health department to report suspect cases and coordinate testing at a public health laboratory, if needed. More information about specimen collection, handling, and shipping for Zika virus is available here.
Many other diseases can have a similar clinical presentation as Zika virus26. Dengue, chikungunya, leptospirosis, malaria, rickettsia, group A streptococcus, rubella, measles, parvovirus, enterovirus, adenovirus, and other pathogens should be considered in persons with suspected Zika infection26.

Currently, there is no vaccine or specific treatment for Zika virus infection26,27. Patients can be treated with supportive care; nonsteroidal anti-inflammatory (NSAIDs) and acetylsalicylic acid (Aspirin) should be avoided until dengue is ruled out26,27. Persons suspected of Zika infection should be advised to prevent mosquito bites to stop disease transmission.

Congenital Zika Virus Syndrome

In 2015, a temporal and geographic association with a large Zika virus outbreak in Brazil and an increase in microcephaly cases in infants was identified26. After a rigorous evaluation of the scientific evidence, the CDC and international partners have concluded that Zika virus infection during pregnancy is a cause of microcephaly and other severe birth defects26,27,37. Zika virus infection during pregnancy can cause a pattern of birth defects, called Congenital Zika virus syndrome26,27. Congenital Zika virus syndrome can include microcephaly, decreased brain tissue, damage to the eye, limited range of joint motion, and too much muscle tone restricting body movement after birth26,27. There is currently no evidence to suggest that a Zika infection in a non-pregnant woman can affect future pregnancies26,27.

Zika Laboratory Testing

Laboratories

The Arizona State Public Health Laboratory (ASPHL) can perform RT-PCR, IgM serologic testing, and plaque reduction neutralization testing (PRNT) for Zika virus14. For Zika virus testing, serum must be submitted14. Within two weeks of exposure, urine and whole blood can also be tested14. For more information about Zika specimen handling and shipment, please the ADHS Zika laboratory webpage14.

Samples

Serum is the primary diagnostic specimen for Zika virus testing14. For pregnant individuals, RT-PCR and serological testing should be run concurrently as soon as possible after symptom onset, up to 12 weeks after onset26,27. For non-pregnant individuals, RT-PCR and
serological testing should be run within the first two weeks of illness; after the first two weeks, only serology should be utilized for non-pregnant individuals26,27. Additional specimens—including cerebrospinal fluid, amniotic fluid, and placental tissues—can be tested in consultation with the local health department, Arizona Department of Health Services, and CDC14,26.

Additional Testing

When testing symptomatic patients for Zika virus, testing for dengue and chikungunya viruses should also be considered26. All three infections have similar clinical manifestations, and testing can help identify the causative agent26.

If Zika testing is being performed as part of a workup for an infant with microcephaly, diagnostic testing for other causes of microcephaly should also be performed26,27.

Zika Case Definitions

The Council for State and Territorial Epidemiologists (CSTE) released draft case definitions for Zika virus in early 2016, and approved revised case definitions in June 201638.

Clinical Criteria for Zika Virus (ZIKV) Disease, Non-Congenital

A person with one or more of the following not explained by another etiology17,38:

- Clinically compatible illness that includes17,38:
 - Acute onset of fever (measured or reported) OR17,38
 - Maculopapular rash OR17,38
 - Arthralgia OR17,38
 - Conjunctivitis17,38
- Complication of pregnancy17,38
 - Fetal loss OR17,38
 - Fetus or neonate with17,38
 - Congenital microcephaly OR17,38
 - Congenital intracranial calcifications OR17,38
 - Other structural brain or eye abnormalities OR17,38
 - Other congenital central nervous system-related abnormalities including birth defects such as clubfoot or multiple joint contractures17,38
- Guillain-Barré syndrome or other neurologic manifestations17,38
Clinical Criteria for Zika Virus (ZIKV) Disease, Congenital

Live born infant with one or more of the following not explained by another etiology17,38:

- Congenital microcephaly 17,38
- Intracranial calcifications 17,38
- Structural brain or eye abnormalities 17,38
- Other congenital central nervous system-related abnormalities 17,38.

Note: testing for other congenital infections such as syphilis, toxoplasmosis, rubella, cytomegalovirus infection, lymphocytic choriomeningitis infection, and herpes simplex virus infection should be considered in addition to an assessment of potential genetic and teratogenic causes of congenital anomalies17,38.

Case Classification for Zika Virus Disease, Non-Congenital

A confirmed case17,38
Meets clinical criteria for Zika Virus Disease, Non-Congenital (see above) \textbf{AND} one or more of the following laboratory criteria17,38:

- Detection of Zika virus by culture, viral antigen or viral RNA in serum, CSF, tissue, or other specimen (e.g. amniotic fluid, urine, semen, saliva) \textbf{OR}17,38
- Positive Zika virus IgM antibody test of serum or CSF \textbf{with} positive Zika virus neutralizing antibody titers and negative neutralizing antibody titers against dengue or other flaviviruses endemic to the region where exposure occurred17,38.

A probable case17,38
Meets clinical criteria for Zika Virus Disease, Non-Congenital (see above) \textbf{AND} has an epidemiologic linkage** \textbf{AND} the following laboratory criteria17,38:

- Positive Zika virus IgM antibodies in serum or CSF \textbf{AND}17,38
- Positive neutralizing antibody titers against Zika virus and dengue or other flaviviruses endemic to the region where exposure occurred \textbf{OR} negative dengue virus IgM antibody test and no neutralizing antibody testing performed17,38.

Case Classification for Zika Virus Disease, Congenital

A confirmed case17,38
Meets clinical criteria for Zika Virus Disease, Congenital (see above) \textbf{AND} one or more of the following laboratory criteria17,38:

- Detection of Zika virus by culture, viral antigen or viral RNA in fetal tissue, umbilical cord blood, or amniotic fluid; or neonatal serum, CSF, or urine collected within 2 days of birth \textbf{OR}17,38
Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses

- Positive Zika virus IgM antibody test of umbilical cord blood, neonatal serum or CSF collected within 2 days of birth with positive Zika virus neutralizing antibody titers and negative neutralizing antibody titers against dengue or other flaviviruses endemic to the region where exposure occurred\(^{17,38}\).

A probable case\(^{17,38}\)

Meets clinical criteria for Zika Virus Disease, Congenital (see above) AND the neonate’s mother has an epidemiologic linkage** or meeting laboratory criteria for recent Zika or flavivirus infection AND the following laboratory criteria\(^{17,38}\):

- Positive Zika virus IgM antibodies in serum or CSF collected within 2 days of birth AND\(^{17,38}\)
- Positive neutralizing antibody titers against Zika virus and dengue or other flaviviruses endemic to the region where exposure occurred OR negative dengue virus IgM antibody test and no neutralizing antibody testing performed\(^{17,38}\).

Case Classification for Zika Virus Infection, Non-Congenital

A confirmed case\(^{17,38}\)

Does not meet clinical criteria for non-congenital disease BUT meets one or more of the following laboratory criteria\(^{17,38}\):

- Detection of Zika virus by culture, viral antigen or viral RNA in serum, CSF, tissue, or other specimen (e.g. amniotic fluid, urine, semen, saliva) OR\(^{17,38}\)
- Positive Zika virus IgM antibody test of serum or CSF with positive Zika virus neutralizing antibody titers and negative neutralizing antibody titers against dengue or other flaviviruses endemic to the region where exposure occurred\(^{17,38}\).

A probable case

Does not meet clinical criteria for non-congenital disease BUT has an epidemiologic linkage** AND the following laboratory criteria\(^{17,38}\):

- Positive Zika virus IgM antibodies in serum or CSF AND\(^{17,38}\)
- Positive neutralizing antibody titers against Zika virus and dengue or other flaviviruses endemic to the region where exposure occurred OR negative dengue virus IgM antibody test and no neutralizing antibody testing performed\(^{17,38}\).

Case Classification for Zika Virus Infection, Congenital

A confirmed case\(^{17,38}\)

Does not meet clinical criteria for congenital Zika disease BUT meets one or more of the following laboratory criteria\(^{17,38}\):
Detection of Zika virus by culture, viral antigen or viral RNA in fetal tissue, umbilical cord cord, or amniotic fluid; or neonatal serum, CSF, or urine collected within 2 days of birth OR17,38

Positive Zika virus IgM antibody test of umbilical cord blood, neonatal serum or CSF collected within 2 days of birth with positive Zika virus neutralizing antibody titers and negative neutralizing antibody titers against dengue or other flaviviruses endemic to the region where exposure occurred17,38.

A probable case17,38

Does not meet clinical criteria for congenital Zika disease BUT the neonate’s mother has an epidemiologic linkage** or meeting laboratory criteria for recent Zika or flavivirus infection AND the neonate meets the following laboratory criteria17,38:

- Positive Zika virus IgM antibodies in serum or CSF collected within 2 days of birth AND
- Positive neutralizing antibody titers against Zika virus and dengue or other flaviviruses endemic to the region where exposure occurred OR negative dengue virus IgM antibody test and no neutralizing antibody testing performed17,38.

Epidemiologic Linkage Criteria

- Resides in or recent travel to an area with known local Zika virus transmission OR17,38
- Sexual contact with a confirmed or probable case within the infection transmission risk window of Zika virus infection or person with recent travel to an area with known Zika virus transmission OR17,38
- Receipt of blood or blood products within 30 days of symptom onset OR17,38
- Organ or tissue transplant recipient within 30 days of symptom onset OR17,38
- Association in time and place with a confirmed or probable case OR17,38
- Likely vector exposure in an area with suitable seasonal and ecological conditions for potential local vector borne transmission17,38.
Zika Virus Case Classification Algorithm

![Zika Virus Case Classification Algorithm Diagram](image-url)
Zika Virus Case Classification Algorithm

Non-Congenital Zika Case Classification

Start Here

Was the individual positive for Zika virus by RT-PCR or viral culture?

YES

CONFIRMED CASE

Does the individual have clinically compatible illness?**

YES

MorbSpec-Zika-Non-Congenital DISEASE (symptomatic)

NO

MorbSpec-Zika-Non-Congenital INFECTION (asymptomatic)

NO/UNK

Was the individual positive by Zika PRNT with result 4-fold or greater difference in neutralizing antibodies between Zika and dengue or other flaviviruses?

YES

NO/UNK

Was the individual POSITIVE/EQUIVOCAL for Zika IgM antibodies?

YES

NO/UNK

MorbSpec-Zika-Non-Congenital DISEASE (symptomatic)

NO/UNK

MorbSpec-Zika-Non-Congenital INFECTION (asymptomatic)

Does the individual have an epidemiologic linkage?**

YES

NO

Is the individual NEGATIVE for Dengue IgM antibodies?

YES

NO/UNK

PROBABLE CASE: UNSPECIFIED FLAVIRUS

Clinically Compatible Illness

Does the individual have one or more of the following, not explain by another etiology:

- Clinically compatible illness that includes:
 - Acute onset of fever (measures or reported) OR
 - Maculopapular rash OR
 - Arthralgia OR
 - Conjunctivitis;
 - Complication of pregnancy
 - Fetal loss OR
 - Fetus or neonate with
 - Congenital microcephaly OR
 - Congenital intracranial calcifications OR
 - Other structural brain or eye abnormalities;
 - Guillain-Barré syndrome or other neurologic manifestations

Epidemiologic Linkage

- Resides in or recent travel to an area with known local Zika virus transmission OR
- Sexual contact with a confirmed or probable case within the infection transmission risk window of Zika virus infection or person with recent travel to an area with known Zika virus transmission OR
- Receipt of blood or blood products within 30 days of symptom onset OR
- Organ or tissue transplant recipient within 30 days of symptom onset OR
- Association in time and place with a confirmed or probable case OR
- Likely vector exposure in an area with suitable seasonal and ecological conditions for potential local vector-borne transmission
Zika Virus Case Classification Algorithm

Clonally Compatible Illness
- The individual a live-born infant with one or more of the following not explained by another etiology:
 - Congenital microcephaly OR
 - Intracranial calcifications OR
 - Structural brain or eye abnormalities OR
 - Other congenital central nervous system-related abnormalities

Epidemiologic Linkage
- Residence in or recent travel to an area with known local Zika virus transmission OR
- Sexual contact with a confirmed or probable case within the infection transmission risk window of Zika virus infection OR
- Person with recent travel to an area with known Zika virus transmission OR
- Receipt of blood or blood products within 30 days of symptom onset OR
- Organ or tissue transplant recipient within 30 days of symptom onset OR
- Association in time and place with a confirmed or probable case OR
- Likely vector exposure in an area with suitable seasonal and ecological conditions for potential local vector-borne transmission
IV. CHIKUNGUNYA, DENGUE, AND ZIKA COMPARISON

Dengue, chikungunya, or Zika virus infection can lead to acute febrile illness, and determining the causative virus can be challenging to differentiate clinically. The information in this section is intended to assist in differential diagnosis of these diseases.

Comparison of the clinical and laboratory features of chikungunya, dengue, and Zika virus infections

<table>
<thead>
<tr>
<th>Clinical and laboratory features</th>
<th>Chikungunya virus infection</th>
<th>Dengue virus infection</th>
<th>Zika virus infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever (>102°F or 39°C)</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Myalgias</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Arthralgias</td>
<td>+++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Headache</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Rash</td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Shock</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>++</td>
<td>+++</td>
<td>not available</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>+</td>
<td>+++</td>
<td>not available</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>+++</td>
<td>+</td>
<td>not available</td>
</tr>
<tr>
<td>Elevated hematocrit</td>
<td>-</td>
<td>++</td>
<td>not available</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>+</td>
<td>+++</td>
<td>not available</td>
</tr>
</tbody>
</table>

Key points:

- Chikungunya cases are more likely to have high fever, arthralgia, and lymphopenia.
- Dengue cases are more likely to have leukopenia, neutropenia, and thrombocytopenia.
- Zika cases are more likely to have a rash and conjunctivitis.

Differential diagnoses for dengue, chikungunya, and Zika include the following agents or diseases:

- Malaria
- Rocky Mountain spotted fever
Epidemiology

<table>
<thead>
<tr>
<th></th>
<th>Chikungunya virus infection</th>
<th>Dengue virus infection</th>
<th>Zika virus infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation period in humans</td>
<td>3–7 (range 1–12) Days¹,⁴,⁶,¹²</td>
<td>4–7 (range 3–14) days¹⁸–²¹</td>
<td>3–14 days²⁶,³⁶</td>
</tr>
<tr>
<td>Extrinsic incubation period in mosquitoes</td>
<td>~10 days¹,⁴,⁶,¹²</td>
<td>8–12 days¹⁸–²¹</td>
<td>~10 days²⁶,³⁶</td>
</tr>
<tr>
<td>Duration of acute disease</td>
<td>7–10 days¹,⁴,⁶,¹²</td>
<td>7–10 days¹⁸–²¹</td>
<td>~1 week²⁶,³⁶</td>
</tr>
</tbody>
</table>

Recommendations for Healthcare Providers

1) **Consider** chikungunya, dengue, and Zika viruses in patients with acute febrile illness, particularly if travel out of the country to areas with high mosquito activity is reported. Compatible symptoms include:
 a. Fever
 b. Myalgia
 c. Arthralgia
 d. Maculopapular rash
 e. Conjunctivitis
 f. Retro-orbital pain
 g. Headache

Other differentials can include malaria, leptospirosis, influenza, Rocky Mountain spotted fever, and other diseases⁴⁰–⁴².

2) **If chikungunya, dengue, or Zika is suspected**, order tests for **ALL THREE diseases**. Count the number of days after symptom onset to determine which test types are indicated.
 a. Test intervals:
 i. 0–3 days: PCR only⁴,¹⁰,²¹,²³,²⁶,²⁷
 ii. 4–6 days: PCR and IgM⁴,¹⁰,²¹,²³,²⁶,²⁷

<table>
<thead>
<tr>
<th>Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptospirosis</td>
</tr>
<tr>
<td>Other alphaviral infections (Mayaro, Ross River, Barmah Forest, O’nyong nyong, and Sindbis viruses)</td>
</tr>
<tr>
<td>Post-infectious arthritis (including rheumatic fever)</td>
</tr>
<tr>
<td>Juvenile rheumatoid arthritis</td>
</tr>
<tr>
<td>Unknown hemorrhagic fever</td>
</tr>
</tbody>
</table>

| Page 36 |
iii. ≥7 days: IgM only4,20,21,23,26,27

Note: Prolonged detection of Zika RNA in serum of pregnant women have been reported; therefore, Zika virus PCR and IgM should be run concurrently as soon as possible after symptom onset, up to 12 weeks, in pregnant women26,27.

b. Specimen type (note: please check with receiving laboratory to confirm shipping instructions)
 i. Serum is the primary diagnostic specimen for Zika virus14.
 ii. If testing at Arizona State Public Health Laboratory (ASPHL), see Guide to Laboratory Services manual14.

3) Notify public health IMMEDIATELY about suspect cases
 a. Cases should be reported to the local health department (preferred) or the Arizona Department of Health Services at 602-364-3676 or vbzd@azdhs.gov
 b. Local health departments should coordinate with ADHS to alert the laboratory of incoming specimens.
 c. Advise suspect cases to avoid mosquitoes for 3 weeks after the onset of symptoms or potential exposure.
 i. Explanation: viremic patients are at risk for virus transmission to mosquitoes. This can lead to locally-acquired disease and community outbreaks. Patients should also contact public health if other household members develop compatible symptoms.

4) Manage cases as dengue until proven otherwise
 a. Do not prescribe aspirin, non-steroidal anti-inflammatory drugs (NSAIDs), or corticosteroids20,21,23.
 b. Do not overload fluids20,21,23.
V: PLANNING AND RESPONSE SCENARIOS

Different actions by public health, healthcare providers, and vector control staff are warranted depending on the epidemiologic scenario. This section describes a brief overview of different response scenarios and which actions should be considered. More detailed recommendations by agency are found in the public health, vector control, and messaging sections.

Scenario 1: Risk for imported cases
This is the baseline status for areas with no chikungunya, dengue, or Zika virus transmission. No locally acquired disease cases have been reported. This could be further characterized into 2 categories: low risk and elevated risk.

- **Low Risk:**
 - Aedes aegypti or Aedes albopictus mosquitoes not present in the area
 - Few imported cases of chikungunya, dengue or Zika virus infection

- **Elevated Risk:**
 - Aedes aegypti or Aedes albopictus present in area
 - Immunologically naïve population
 - High numbers of imported cases of chikungunya, dengue, or Zika virus infection

Scenario 2: Response to locally acquired cases
This scenario occurs if locally acquired cases of dengue, chikungunya, or Zika are identified. This would most likely begin with focal transmission in households, neighborhoods, or communities, but could spread over broader areas.

- **Focal transmission**
 - Discrete areas (such as neighborhood) affected
 - Small number of locally acquired cases

- **Widespread transmission**
 - Multiple areas of communities affected
 - High case numbers reported, with exposure locations unknown

Scenario 3: Recovery
The recovery phase is a time to implement sustainable public health measures and to inform the public about the decreased disease incidence and risk. This phase is initiated following a demonstrated decrease in surveillance results (as determined by vector control data) or human disease cases (as determined by epidemiological data).
Collaboration Between Agencies

Control of vectorborne diseases requires cooperation between many different agencies, including public health, environmental health, and vector control partners. Chikungunya, dengue, and Zika are unique arboviruses for Arizona in that they spread only between humans and mosquitoes. Because of this anthropocentric-cycle, surveillance for human disease cases is an effective method to approximate where the virus is found in the environment. The areas with cases should be considered priorities for enhanced surveillance and potentially for vector control interventions.

Public health, vector control, and health educators should collaborate in development and dissemination of educational materials and outreach to the public. As previously noted, major control factors for *Aedes aegypti* or *Aedes albopictus* mosquitoes are personal protection and elimination of mosquito breeding sites near and around the home, and community education and action is necessary to prevent disease transmission.

Partners to Consider for Chikungunya, Dengue, and Zika Response

- Local health departments
- Local vector control agencies
- Pest abatement districts
- State health department
- Commercial and state laboratories
- Centers for Disease Control and Prevention
 - Dengue Branch
 - Arboviral Diseases Branch
 - Division of Global Migration and Quarantine
- Healthcare providers
- Blood donation centers
- Tribal jurisdictions and Indian Health Service
- First responders in emergency preparedness or law enforcement
- Community leaders
- Media partners
- University partners
- Customs and Border Protection
- Binational partners in Mexico or other neighboring jurisdictions
Recommended Response Activities by Epidemiologic Scenario

The table below indicates key preparedness and response activities to consider for chikungunya, dengue, or Zika virus introduction. Earlier actions should be continued into later stages, but are only listed once for simplicity. *More details about recommended actions are found in the public health, vector control, and messaging sections.*

<table>
<thead>
<tr>
<th>Response scenario</th>
<th>Other considerations</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk for imported cases</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Low Risk | | ❖ Prepare messaging for public outreach
❖ Strengthen working relationships between public health and vector control agencies |
| Elevated Risk | | ❖ Provide education and outreach to healthcare providers
❖ Ensure rapid laboratory testing available for suspect human cases of chikungunya, dengue, or Zika virus
❖ Raise public awareness about *Aedes* aegypti mosquitoes |
| **Case Investigation and Response** | | ❖ Investigate cases to determine travel history and where acquisition occurred
❖ Advise ill persons to prevent mosquito bites for 3 weeks after symptom onset or potential exposure to chikungunya, dengue, or Zika viruses
❖ Perform *Aedes aegypti* trapping around the surrounding neighborhoods of cases
❖ Consider laboratory testing for chikungunya, dengue, or Zika among *Aedes aegypti* mosquitoes
❖ Inquire about illnesses among other household members (active case finding for locally-acquired cases)
❖ Visit surrounding neighborhoods of cases to look for potential *Aedes aegypti* breeding locations (i.e. water-holding containers) and perform source reduction
❖ Eliminate breeding sites, use larvicide insecticides, and then consider adulticide treatment around case neighborhoods |
<table>
<thead>
<tr>
<th>Response scenario</th>
<th>Other considerations</th>
<th>Actions</th>
</tr>
</thead>
</table>
| **Focal transmission** | | ✓ Inform public about risk of locally-acquired cases through press releases and social media
✓ Consider door-to-door campaign in affected neighborhood(s) for source reduction and to encourage mosquito avoidance
✓ Increase Ae. aegypti trapping and surveillance in affected areas by using oviposition traps or adult traps
✓ Consider laboratory testing for chikungunya, dengue, or Zika among Aedes aegypti mosquitoes in the area, if not already implemented
✓ Perform active case finding in affected communities, or within 150m of case residences
✓ Perform larvicide and/or adulticide spraying of affected neighborhoods
✓ Consider need for screening or deferring blood donations from affected areas
✓ Analyze human and mosquito surveillance data through mapping
✓ Describe epidemiology of persons affected and possible risk factors
✓ Ensure data is shared with public health, vector control, and healthcare partners |
| **Widespread transmission** | | ✓ Launch widespread media campaign
 o Raise awareness about risk from disease from mosquito bites
 o Emphasize importance of source reduction
 o Encourage ill persons to seek care
✓ Consider extensive larvicde applications and ultra-low volume spraying in highly-affected neighborhoods to lower mosquito numbers
✓ Activate medical surge capacity plans for healthcare facilities and laboratories as needed
✓ Ensure blood donations from affected areas are tested or deferred to prevent |
Response scenario: Other considerations

- **Actions**
 - Transfusion-associated disease cases
 - Prioritize laboratory testing for suspect cases in new areas, or with atypical disease presentations
 - Consider utilization of mosquito testing for viruses to determine risk levels and viral presence
 - Continue mapping of human and mosquito data; focus response resources on most affected areas.
 - Consider screening in blood banks or among blood donors to avoid disease transmission through blood transfusion.

Recovery

- **Actions**
 - Consider enhanced surveillance for human cases in high-risk areas
 - Decrease *Aedes aegypti* surveillance to baseline levels
<table>
<thead>
<tr>
<th>Epidemiologic scenario</th>
<th>Samples to test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk for imported cases</td>
<td>✷ All samples from patients exhibiting clinically compatible illness</td>
</tr>
<tr>
<td></td>
<td>✷ With new introduction of a virus, extra testing should be done to verify viral presence</td>
</tr>
<tr>
<td>Response to locally acquired cases</td>
<td>✷ Consider testing mosquitoes near the home of locally acquired cases</td>
</tr>
<tr>
<td></td>
<td>✷ If widespread transmission, subset samples from human cases with compatible symptoms, as determined by lab constraints and epidemiological status</td>
</tr>
<tr>
<td></td>
<td>✷ Samples from all atypical or severe cases should be tested</td>
</tr>
<tr>
<td></td>
<td>✷ Once viral presence has been verified, limited testing can be considered.</td>
</tr>
</tbody>
</table>
VI: PUBLIC HEALTH SURVEILLANCE AND RESPONSE

Section Overview
- Reporting and Agency Roles
- Surveillance and Investigation Guidelines
 - Goals
 - Surveillance Strategies
 - Case Investigation
 - Outbreak Investigation
 - Preventing Transmission
 - Geographic Information Systems
- Other Planning Considerations
 - Bloodborne Transmission
 - Medical Surge
- Incident Command System
- Response Scenarios

Reporting and Agency Roles

Reporting
Chikungunya, dengue, and Zika virus are nationally reportable diseases through the National Notifiable Disease Surveillance System (NNDSS). All three diseases are unique morbidities in MEDSIS for electronic surveillance within Arizona. In an area with no previous locally acquired cases, even a single locally acquired case is considered an outbreak.

If an outbreak is identified, the cases should be entered in Outbreak Module in MEDSIS. This system facilitates outbreak management and tracking. After completion of the investigation, the outbreak should be closed within 30 days.

Local, State, and Federal Roles
As with other infectious disease investigations, local health departments are the lead agency for responding to disease threats within their jurisdictions. Arizona Department of Health Services (ADHS) can assist counties as needed in case investigation and response, and also plays the lead in coordinating outbreak responses across multiple counties or jurisdictions. CDC Dengue Branch (Puerto Rico) and CDC Arboviral Diseases Branch (Fort Collins, CO) can offer subject matter expertise and additional support.
Surveillance and Investigation Guidelines

Human case surveillance for chikungunya, dengue, or Zika virus infections should include the following goals.

- Track the number and distribution of disease cases
- Track pregnancy and infant outcomes (for Zika)
- Identify circulating virus types
- Identify risk factors for infection
- Monitor case distribution for disease introduction into surrounding areas
- Develop disease prevention strategies
- Assess clinical severity and impact on society
- Feedback of findings to collaborative agencies

Surveillance Strategies

In Arizona, passive case-based surveillance is routine. This system relies on case reporting from clinicians and laboratories to public health.

In the event of a locally acquired case or increased risk for cases, public health officials should consider utilizing enhanced surveillance. This includes **active surveillance**, in which public health officials actively collect disease data from suspect cases, clinicians, or laboratories. For more information about active surveillance at the community level, please see “Household-based Cluster Investigations” section below. **Syndromic surveillance**, which detects syndromes rather than disease etiologies, may be useful for detecting underreported cases and disease trends in a timely manner. Syndromic surveillance for arboviral diseases (chikungunya, dengue, St. Louis encephalitis, and West Nile) has been ongoing in Arizona since 2015; Zika was added to syndromic surveillance in 2016.

Laboratory sentinel surveillance is another form of enhanced surveillance that can be used to gather high-quality, detailed data not captured through passive surveillance. This entails using selected reporting facilities to collect detailed information about cases and disease trends, or perform more specific testing for disease syndromes that could be caused by multiple etiologies (e.g., febrile illnesses). The state can assist local public health authorities in initiating enhanced surveillance if requested.

In 2015, ADHS implemented an enhanced **laboratory surveillance system through laboratory orders** for dengue and chikungunya viruses. Because notification of positive laboratory test results can occur days to weeks after illness onset, and because public health intervention is most valuable in the first few days of illness (the viremic period), this
system involves notification of laboratory orders to public health before final test results are available. Currently, it is in place with several commercial laboratories and healthcare facilities in Arizona. Zika virus was added to the laboratory surveillance in 2016.

Case Investigation
Investigation of suspected cases is an important part of public health activities for chikungunya, dengue, or Zika viruses. A short checklist of overview case investigation goals is listed below.

Checklist for Case Investigation
- Ensure case is entered in MEDSIS
 - Ensure that all of the disease specific observations (DSO) are filled out in MEDSIS
- Interview case to determine where exposure most likely occurred (country and region, if possible) and clinical course
- Attach laboratory results if available
- Attach medical records if available

Outbreak Investigation
To understand outbreak development and trends, case information should be assessed in aggregate. A line list of suspect and confirmed cases is useful for data analysis. MEDSIS extracts can be used to pull up-to-date data on a regular basis; Excel worksheets and other databases (Epi Info or Access) are alternatives, but can prove more challenging for data sharing and updating case information. Case investigation forms are available for chikungunya and dengue/Zika.

Household-based Cluster Investigations
In the event of local disease transmission or increased numbers of travel-associated cases in a focal area, enhanced surveillance for asymptomatic cases or persons who did not seek healthcare can be valuable in identifying the extent of disease spread and directing vector control actions. The cluster investigations are usually focused around confirmed case residences (150m radius) or neighborhoods, and involve interviews, education, and testing of other persons at risk for disease in the area. These also provide an opportunity to identify mosquito breeding sites and take vector control actions (larvicide or adulticide) in high risk zones. Team members needed include interviewers, phlebotomists, and vector control specialists. Additional details, form templates, and supply information for cluster investigations are available from ADHS (by request) and CDC.

Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses
Preventing Transmission

Stopping the spread of chikungunya, dengue, or Zika is challenging because there are currently no approved vaccines available to prevent disease. There are, however, several opportunities for how transmission chain can be stopped. These opportunities and associated prevention actions listed in the following table.

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Potential actions</th>
</tr>
</thead>
</table>
| Prevent introduction of human illness | ❖ Provide information to travelers about disease risk and prevention while traveling
| | ❖ Ensure viremic persons are not bitten by mosquitoes |
| | ❖ Educate travelers about the risk for sexual transmission |
| Reduce or eliminate the competent vector population | ❖ Eliminate containers used for breeding (source reduction) |
| | ❖ Use larvicide on immature mosquitoes |
| | ❖ Use adulticide for adult mosquitoes |
| Limit contact between humans and mosquitoes| ❖ Prevent mosquito entry into households (screens in windows or air conditioning) |
| | ❖ Prevent mosquito bites by using insect repellant and wearing loose-fitting, long-sleeved shirts and pants |

Geographic Information Systems

Geographic Information Systems (GIS) are an extremely useful tool for providing operational direction and analysis during an outbreak. Several programs are available for mapping, and include ESRI Arc GIS, QGIS, and others. Maps can be created to indicate disease incidence, spatially monitor the outbreak, and track changes in human disease and vector surveillance data as a response to vector control efforts.

Ideally, the baseline vector data as well as the human case data from imported cases will have been mapped prior to the start of the outbreak. This allows for a more accurate comparison of disease incidence across time and space.
Other Planning Considerations

Bloodborne Transmission
Bloodborne disease transmission of chikungunya, dengue, and Zika is possible; this should be considered both at the hospital level for potential needle-sticks, as well as for screening of blood donors if local transmission occurs. Currently, blood donors are not screened for chikungunya or dengue. FDA released guidance recommending testing all donations in the U.S. for Zika virus in August 2016. If local disease transmission is identified, blood donation centers should be contacted immediately to discuss the need for deferral of blood donors from affected areas.

Medical Surge
In the event of a large number of human cases, plans for influenza surge capacity could be activated to accommodate healthcare facility needs. These plans include diverting ill persons to other facilities, implementing triage protocols in urgent care settings, and encouraging persons with mild or no illness ("worried well") to remain at home. Mosquito control on-site should be considered at healthcare facilities with large numbers of cases. Local vector control agencies should collaborate with local public health to determine the need for vector control management around healthcare facilities.

Guidelines for which individuals should seek medical care in the event of an outbreak, as well as suggested triage protocols for healthcare facilities, can be found in the PAHO/CDC and WHO guidelines found in the appendix of this document.

Outreach to Pregnant Women
In the event of Zika virus transmission, additional outreach and prevention actions for pregnant women should be considered due to the risk for congenital or perinatal Zika virus transmission. Potential activities include messaging about disease transmission through mosquitoes and sexual contact, enhanced prevention through mosquito control or dissemination of Zika prevention kits, Zika testing and counseling during pregnancy, and long-term follow-up of women and infants with Zika virus infection.

To understand more about Zika virus infection during pregnancy, the Centers for Disease Control and Prevention (CDC) established a national US Zika Pregnancy Registry. The Arizona Department of Health Services is participating in the Registry and has been working with county health departments to collect information about pregnancy and infant outcomes. Data from the Registry may provide information on the level of risk, timing of risk, and spectrum of outcomes associated with Zika virus infection during pregnancy. This information can then be used to direct testing, evaluation, and
management of pregnant women and their babies. Steps for county health departments to report possible Zika infections in pregnancy can be found here.

Incident Command System

If an outbreak occurs, public health agencies are encouraged to utilize the incident command system called the Public Health Incident Command System (PHIMS) to manage the incident. The ADHS Health Emergency Operations Center (HEOC) can be activated to respond. The PHIMS system is compliant with the National Incident Management System (NIMS) and is divided into four functional areas: Operations, Planning, Logistics, and Finance. For more specific information about PHIMS operation, please see the ADHS HEOC Standard Operating Procedures and Emergency Response Plan (EPR). The major operational components of the emergency operations structure include epidemiology, vector control, and communications. Epidemiology and disease control staff should work closely with all operational components. Each group should provide reports to assess progress and track updates. All groups should meet regularly to ensure consistency of information and response plans, including but not limited to, data points (such as incidence rate, geographic factors, etc.), activities, and messaging to stakeholders. Coordination is paramount to avoid confusion during the outbreak response.

Public Health Response Scenarios

Scenario 1: Risk for imported cases

Messaging

- Develop educational materials, such as fact sheets and frequently asked questions
- Inform key stakeholders (healthcare partners, vector control officials, and the public) about available resources and guidelines
- Provide information to the public about prevention and risk reduction while traveling
- Disseminate prevention-based educational material, such as instructing the public about how to protect themselves and their homes from mosquitoes
- Provide education and messaging to healthcare partners

Case Investigation and Surveillance

- Closely investigate cases with travel history to areas where chikungunya, dengue, or Zika were reported
- Educate suspect cases about the need to avoid mosquito contact to prevent disease transmission
 - Consider active case finding among household members
- Facilitate confirmatory laboratory testing for suspect and probable cases
- Track the number and distribution of travel-associated cases
Identify risk factors and perform descriptive analysis of cases
- Ensure vector control is notified of areas where cases reside
- Collaborate with vector control counterparts to compare imported human disease cases and mosquito surveillance results

Other Activities
- Consider outreach to partners to develop collaborative response activities
- Develop plans for medical surge capacity at healthcare facilities or laboratories
- Anticipate sensitive issues, including:
 - Safety of increased pesticide application near homes
 - Cost of control measures
 - Potential for bloodborne transmission through transfusions

Scenario 2: Response to locally-acquired cases

Messaging
- Notify media and raise public awareness through press releases about locally acquired cases
- Increase public messaging about key topics:
 - Source reduction and mosquito avoidance
 - Disease symptoms and healthcare seeking recommendations
 - Local public health contacts
- Consider enhanced outreach and education in areas with known human cases
- Provide additional outreach to healthcare providers about diagnostic testing and treatment recommendations

Case Investigation and Surveillance
- Consider methods for enhanced disease surveillance
 - Active case finding or household-based cluster investigations in communities where cases are identified
 - Enhanced laboratory surveillance
 - Enhanced screening for febrile illnesses in healthcare settings
- Maintain up-to-date line list(s) of imported and locally-acquired cases
 - Consider use of Outbreak Module in MEDSIS
- Continue to track the number and spatial distribution of cases
- Describe key epidemiological and clinical features of cases
 - Assess clinical severity and impact on society
- Identify circulating virus types
Continue collaboration with vector control
 - Collaborative outreach and education about source reduction
 - Map human cases and *Aedes aegypti* mosquito surveillance data to identify high-risk areas
 - Target high-risk areas for vector control operations

Other Activities

- Consider ICS activation to organize public health response
- Communicate with blood banks about risk of disease transmission through transfusion; consider screening donors for disease

Scenario 3: Recovery

- Finalize line-lists of imported and locally acquired cases
 - Close outbreaks within 30 days of completion
- Describe key epidemiologic and clinical features discovered during the outbreak
- Scale down interventions to a sustainable level for education dissemination, vector control, etc.
 - Continue collaboration with vector control and the communications branch
- Evaluate and assess the effectiveness of disease surveillance and control efforts
VII: VECTOR SURVEILLANCE AND RESPONSE

Aedes aegypti Epidemiology

Aedes species mosquitoes are widespread worldwide, from tropical to arctic regions. Of the potential Aedes spp. mosquito vectors, only two are known to be established in the
United States: *Aedes aegypti* and *Aedes albopictus*\(^5,47\). In Arizona, *Ae. aegypti* mosquitoes have been identified in multiple areas, including Maricopa, Pinal, Pima, Gila, Graham, Cochise, Santa Cruz, Yavapai, and Yuma counties\(^10\). Current data suggest the *Aedes albopictus* is not found anywhere in Arizona\(^10\). Arizona is home to other *Aedes* species, such as *Aedes vexans*, but these species have never been implicated as chikungunya, dengue, or Zika virus vectors and will not be discussed in this document\(^4,5,10,20,47\).

Ae. aegypti mosquitoes are a peridomestic species and have adapted to live around humans and their homes\(^4,20\). They exhibit different behaviors than the mosquito species that transmit West Nile virus. These differences will be discussed further throughout this section and become important in the context of current capacities of local vector control agencies.

The map on the previous page includes the available data for *Aedes aegypti* presence in Arizona between 2004 and 2016. Much of the data was gathered during the process of West Nile virus surveillance using non-optimal traps for *Aedes aegypti*. This map might not be indicative of all *Ae aegypti* locations throughout the state, particularly in the southern border region.

The map below shows the estimated range of *Aedes aegypti* and *Aedes albopictus* in the United States; these maps do not indicate that the mosquitoes have been found in all locations and do not necessarily represent risk for disease spread\(^47\).

Estimated range of *Aedes aegypti* (left) and *Aedes albopictus* (right) in the United States, 2016

![Estimated range of Aedes aegypti and Aedes albopictus](image)

Vector Surveillance Background

Vector surveillance is used for both technical and research purposes and provides information on potential viral distribution in the environment, as well as distribution changes in time and space. The primary objectives of vector surveillance include the following:
Determine the baseline population of the relevant vector species in time and space, and

Track spatial and temporal changes in the vector’s population, and

Monitor the effectiveness of control interventions, and

Determine which areas are at greatest risk for human disease introduction and transmission.

Mosquito surveillance can be divided into two categories: larval and pupal surveillance, and adult surveillance.

Larval and Pupal Surveillance
During larval or pupal surveillance, all water-holding containers and locations on a household or property are searched for *Aedes aegypti* immatures. Larval or pupal presence is determined, and species identification is confirmed. There are three indices currently used by the World Health Organization (WHO) to quantify findings of these surveys: house index (HI), container index (CI), and Breteau index (BI). The following table describes these indices.

It should be noted that a systematic review of vector indices and dengue transmission found that single BI or HI indices were unreliable predictors for dengue transmission risk, as transmission occurred in areas below the recognized thresholds as well.

Larval surveillance is labor-intensive and is not an optimal form of standard or large-scale surveillance. It also requires cooperation with property owners, as *Aedes aegypti* are most often found in and around homes. This type of surveillance can be useful when investigating mosquito exposure of individual cases or clusters.
<table>
<thead>
<tr>
<th>Larval and Pupal Surveillance Indices</th>
<th>Definition</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>House index (HI)</td>
<td>Percentage of houses infested with larvae and/or pupae⁵,²⁰,⁴⁷,⁴⁸.</td>
<td>HI = (Number of Infested houses X 100) /houses inspected²⁰</td>
<td>Percentage of houses infested with larvae and/or pupae⁴⁷. Best for population level data. HI <1% may indicate low risk⁴⁷.</td>
</tr>
<tr>
<td>Container index (CI)</td>
<td>Percentage of water-holding containers infested with larvae and/or pupae⁵,²⁰,⁴⁷,⁴⁸.</td>
<td>CI = (Number of infested containers X 100) /containers inspected²⁰</td>
<td>Indicates percent of infested containers⁴⁷.</td>
</tr>
<tr>
<td>Breteau index (BI)</td>
<td>Number of larvae/pupae infested containers per 100 houses inspected⁵,²⁰,⁴⁷,⁴⁸.</td>
<td>BI = (Number of infested containers X 100) /houses inspected²⁰</td>
<td>Indicates number of infected containers per 100 homes⁴⁷.</td>
</tr>
</tbody>
</table>

Adult Surveillance

Adult *Aedes aegypti* surveillance can be valuable in determining the effectiveness of adulticide control measures and seasonal trends⁵,²⁰,⁴⁷,⁴⁸. There are three primary methods of collection, which include landing counts, resting collections, and trappings. For **landing counts**, a human subject is used as bait and the numbers of feeding mosquitoes that land on the person are counted. The result should be expressed as landing rate per hour²⁰,⁴⁷,⁴⁸. This method is generally not employed for safety reasons²⁰,⁴⁷,⁴⁸. **Resting collections** are a safer option, in which a mouth or a battery-powered aspirator is used to capture adult mosquitoes at rest²⁰,⁴⁷,⁴⁸. The result is expressed as the number of adult mosquitoes per house²⁰,⁴⁷. Much like larval and pupal sampling, these methods are both labor and time-intensive and should only be considered under certain circumstances, such as for risk assessments of individual cases or clusters²⁰,⁴⁷. Adult mosquito **traps** are the least labor and time-intensive, and provide the most data²⁰,⁴⁷,⁴⁸.
To focus *Aedes aegypti* surveillance efforts, different statistical sampling methods can be used to develop estimates of community levels\(^\text{20}\). Options to consider include the following:

- Simple random sampling\(^\text{20}\),
- Systematic sampling (selecting every “nth” house)\(^\text{20}\),
- Stratified random sampling (stratifying by populations and selecting randomly within strata)\(^\text{20}\).

 - For example, stratifying populations by neighborhood, and randomly selecting “x” number of homes in each neighborhood based on population estimates\(^\text{20}\). This can help ensure areas are equally represented\(^\text{20}\). If arboviral disease cases are clustered in certain areas, additional *Aedes aegypti* surveillance efforts could be focused there.

A variety of traps can be used for *Aedes aegypti* surveillance; brief descriptions of several common types are included in the table below.
<table>
<thead>
<tr>
<th>Trap Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sticky Traps</td>
<td>Visual or odor-baited traps that attract and trap adult mosquitoes to sticky surfaces(^{20,47}).</td>
</tr>
<tr>
<td>Oviposition Traps</td>
<td>Traps are visually pleasing and odor-baited for mosquitoes. They often contain germination paper or another substrate on which ovipositing female mosquitoes can deposit eggs(^{20,47,48}). The traps are checked weekly and the eggs are identified and counted(^{20,47,48}). SpringStar Trap-N-Kill® is an example of a lethal ovitrap, in which the egg laying female cannot escape and is trapped inside and killed(^{20,47,50}).</td>
</tr>
<tr>
<td>BG Sentinel Traps</td>
<td>Adult mosquitoes are attracted to the odor-baited traps and are sucked into a black catch bag with a suction fan(^{5,47,51}). Air exits with ascending currents through the white mesh(^{51,52}).</td>
</tr>
<tr>
<td>CO2 Traps</td>
<td>Mosquitoes are attracted to the carbon dioxide and light used in the traps(^{52}). These traps were designed for Culex species mosquitoes, and are not optimal for Aedes aegypti(^{5,47,52}).</td>
</tr>
</tbody>
</table>

The table below lists Aedes aegypti surveillance options, and pros and cons of each method\(^{5,20,47}\).
<table>
<thead>
<tr>
<th>Surveillance Type</th>
<th>Life Stage</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larval/pupal sampling</td>
<td>Larval and pupal</td>
<td> Not resource intensive<sup>5,20,47</sup></td>
<td> Time intensive<sup>5,20,47</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td> No information on adult populations<sup>5,20,47</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td> No viral testing possible<sup>5,20,47</sup></td>
</tr>
<tr>
<td>Oviposition Traps</td>
<td>Egg</td>
<td> Not resource intensive<sup>5,20,47</sup></td>
<td> Time intensive<sup>5,20,47</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td> Inexpensive<sup>5,20,47</sup></td>
<td> Can only provide presence and absence data (not population density data)<sup>5,20,47</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td> Effectively provides presence and absence data<sup>5,20,47</sup></td>
<td> Species must be identified at egg stage, or reared to adulthood<sup>5,20,47</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td> No viral testing possible<sup>5,20,47</sup></td>
</tr>
<tr>
<td>BG Sentinel Traps</td>
<td>Adult</td>
<td> Most effective trap for capturing Aedes aegypti mosquitoes<sup>5,47,52</sup></td>
<td> Very high initial cost<sup>5,47</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td> Provides population density data<sup>5,48,52</sup></td>
<td> Time intensive<sup>5,47</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td> Adult mosquitoes can be tested for virus<sup>5,47</sup></td>
<td></td>
</tr>
<tr>
<td>CO2 Traps</td>
<td>Adult</td>
<td> Already frequently used in AZ<sup>10</sup></td>
<td> Inefficient at capturing Aedes spp. mosquitoes<sup>5,47,52</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td> Adults mosquitoes can be tested for virus<sup>53</sup></td>
<td> Not ideal for population density estimates<sup>5,47,52</sup></td>
</tr>
</tbody>
</table>
Vector Surveillance Guidelines

Because *Aedes aegypti* mosquitoes have short flight distances\(^{11,20}\), residences of persons with chikungunya, dengue, or Zika virus infections are often used as an approximation of exposure locations\(^{29,47}\). The caveat to this approach is that it requires vector control and public health agencies to wait for an increase in disease incidence before geographically targeted interventions can be implemented\(^{29}\).

Viral testing of mosquitoes by RT-PCR for chikungunya, dengue, and Zika virus is available at the Arizona State Public Health Laboratory\(^{14}\); however, the value of *Ae. aegypti* mosquito testing for surveillance is not well defined. This is one of the major differences between West Nile virus surveillance and chikungunya, dengue, or Zika surveillance. Chikungunya, dengue, and Zika only amplify in humans and not birds, so human cases are believed to be the best indicators of circulating virus\(^{29,53}\). However, viral testing of mosquitoes may be helpful under certain circumstances. This should be considered, for example, around the homes of identified locally acquired cases or clusters of travel-associated cases\(^{29}\). It’s also possible that effective viral testing of mosquitoes could be valuable within the context of a large and well-established vector surveillance program.

Enhanced vector surveillance should be considered in response to any increased risk factor, such as the first locally acquired case or a sharp increase in travel-associated cases\(^{29,47}\). Enhanced surveillance is defined as any surveillance activities above what is routine; this will entail different actions for different communities. The following tables can be used as a statewide guideline for minimum expectations. The Vectorborne and Zoonotic Disease Program within the Arizona Department of Health Services can assist with these activities.

Scenario 1: Risk for Imported Cases

- Determine presence or absence of *Aedes aegypti* mosquitoes in community or region
 - Consider use of ovitraps and *Ae. aegypti*-specific adult traps (e.g., BG Sentinel traps)
- Map mosquito surveillance results with GIS technology to better understand baseline levels and distribution
 - Areas with high *Aedes aegypti* populations should be targeted for education on source reduction and control measures, particularly during warm, wet seasons
- Communicate with public health partners to learn where new or suspected human cases are located. Surveillance and control activities should be focused in these areas in addition to routine surveillance and control, and:
 - Environmental investigation and source reduction education at case
Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses

| Page 60 |

- Collaborate with public health partners to compare maps of known *Ae. aegypti* distribution and imported human disease cases.
- Continue routine surveillance in other areas.
- Provide public education about *Aedes aegypti* mosquitoes and source reduction; consider community-wide cleanup campaigns to reduce or eliminate sources of standing water.

Scenario 2: Response to locally-acquired cases

- Immediately implement enhanced vector surveillance and control in areas with known human cases:
 - Perform *Aedes aegypti* trapping (ovitraps and adult traps) around case households and at other homes in neighborhood (at least 150m radius).
 - Perform environmental investigations in affected neighborhoods to educate homeowners about source reduction.
 - Use adulticide sprays (handheld) in and around case households.
 - Consider ultra-low volume spraying in areas with large *Aedes aegypti* populations and locally-acquired cases.
- Continue close communication and collaboration with public health officials to identify affected areas and focus response efforts:
 - The localized enhanced surveillance and control measures should be continued for three mosquito incubation cycles (i.e. 45 days) following the last identified case.
 - Compare maps of known *Ae. aegypti* distribution and known human cases.
- Continue routine surveillance, education, and source reduction efforts in other areas.

Scenario 3: Recovery

- Scale down response phase activities:
 - Initiate only after a demonstrated decrease in positive surveillance results (as determined by vector control data) and human disease cases (as determined by epidemiologic data).
- Evaluate the effectiveness of vector control efforts with monitoring and evaluation procedures.
- Continue routine surveillance procedures.
- Continue collaboration with epidemiology and communications branches.
All surveillance data should be entered into a standardized spreadsheet used for mosquito surveillance results reporting. The official spreadsheet is found in the appendix of this document. These results should be e-mailed to the Arizona Department of Health Services as an Excel file. The results from individual jurisdictions can then be integrated into a statewide mosquito surveillance report to be issued by ADHS on a consistent basis. This report will help local partners keep abreast of mosquito activity throughout the state.

Vector Control Guidelines

Vector control is the single most important intervention during an outbreak. *Ae. aegypti* mosquitoes have unique behavioral characteristics and ecological preferences that can help target interventions.

Control for *Ae. aegypti* mosquitoes is challenging because they are primarily outdoor daytime biters that live near human habitats. Removing larval habitats is considered the most effective way to reduce *Ae. aegypti* populations. This is termed *source reduction*. *Ae. aegypti* oviposit (lay eggs) primarily in man-made containers filled with water, although suitable natural containers can also serve as mosquito breeding areas. One of the best methods for source reduction is for residents to ensure there are no containers near the home that are uncovered and filled with water, or have the potential to hold water. For source reduction, education is the best intervention.

Ae. aegypti mosquitoes have relatively short flight distances from their birthplaces. This enhances the value of source reduction, as they will not fly great distances to reestablish elsewhere. However, it should be noted that human transportation activity assists in mosquito transport through contaminated containers, with tires as a key example.

Although source reduction is a necessary first line of defense, during an outbreak additional actions may be needed. Insecticides are also available, and include the following:

- Organophosphates (fenthion, temephos, and pirimphos-methyl)
- Spinosin based products
- Insect growth regulators (methoprene, pyriproxyfen and diflubenzuron)
- Biological control (*Bacillus thuringiensis* israelensis, *Bacillus sphaericus* and compounds derived from *Saccharopolyspora spinosa*)
- Insecticidal oils.
Granular applications affect young larvae as they emerge from their egg state because of the longer chemical release period. These treatments can be done pre- or post-flooding. When applied before flooding, organophosphates will land on the dry ground, and only later become activated when the area becomes flooded with water. An exception is temephos, which is labeled to be applied directly to water. This happens concurrently with the reactivation of *Ae. aegypti* eggs that had previously been inactive on dry ground. *Ae. aegypti* eggs are typically laid just above the water line on damp substrates. The eggs are extremely hardy and can withstand desiccation for anywhere from months to over a year, and will reactivate upon contact with water.

Ultra-low volume (ULV) aerial or ground-based spraying of organophosphates (malathion, fenitrothion, pirimiphos-methyl or pyrethroids) are often considered ineffective at controlling urban mosquito species, such as *Ae. aegypti*. Recent evidence, including mosquito control efforts during an outbreak of locally-acquired Zika virus in Florida during 2016, suggests ULV applications are effective at rapidly reducing transmission risk in outbreak settings, even when applications occur at night. This method should be considered if there is a confirmed case of local, mosquito-borne transmission of chikungunya, dengue, or Zika virus infection, or if *Ae. aegypti* population numbers are exceptionally high.

Another option for adult *Ae. aegypti* control includes use of a handheld sprayer to apply insecticide around the homes and yards of human cases and their neighbors. However, if locally acquired cases are identified, this method should be strongly considered to treat limited areas associated with an index case of disease.

Insecticide resistance may develop with frequent use of insecticides. Conducting systematic testing for resistance can be useful to select an insecticide that will be most effective. The CDC Bottle Bioassay can be used to assess resistance and to identify resistance mechanisms.

Barrier pesticide treatments provided by commercial pest control organizations can also be considered. These aim to control roosting mosquitoes, and could be incorporated into routine door/yard pest maintenance packages sold by private parties.
The following table looks at the different *Ae. aegypti* control options, and when to implement each.

<table>
<thead>
<tr>
<th>Control Type</th>
<th>When and Where to Implement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source reduction</td>
<td>- Year round(^4,20,29,47,48)</td>
</tr>
<tr>
<td></td>
<td>- Relies on public education and personal responsibility(^4,20,29,47,48)</td>
</tr>
<tr>
<td></td>
<td>- Target education to known cases and case neighborhoods(^4,20,29,47,48)</td>
</tr>
<tr>
<td>Larvicide</td>
<td>- Should be used in response to vector surveillance data(^4,20,29,47,48)</td>
</tr>
<tr>
<td></td>
<td>- Can be used to treat standing water that is not removable(^4,20,29,47,48)</td>
</tr>
<tr>
<td></td>
<td>- Target towards known cases and case neighborhoods(^4,20,29,47,48)</td>
</tr>
<tr>
<td>Adulticide</td>
<td>- May be useful to rapidly reduce transmission risk in outbreak settings(^29,47,56)</td>
</tr>
<tr>
<td></td>
<td>- Should be used in response to vector and human surveillance data(^29,47)</td>
</tr>
<tr>
<td></td>
<td>- When used, target to known cases and case neighborhoods(^29,47)</td>
</tr>
</tbody>
</table>
Recommendations for Local Vector Control Staff

The recommended standards for Ae. aegypti surveillance and control are highly dependent upon the resources of each community; however, general suggestions are outlined below. Routine mosquito surveillance control should be conducted consistently and throughout the year5,29,47,48. Control actions can be escalated as needed based on surveillance data5,29,47,48. The level of baseline surveillance will depend upon available resources.

Regardless of the scope of activities, a few key principles should always be considered. For routine surveillance, it is important that activities are done at consistent locations to enable comparisons across both space and time5,29,47,48. Ae. aegypti surveillance is best conducted near human homes, and particularly near known disease cases5,29,47,48. If resources allow, surveillance should be conducted yearlong in densely populated areas, with increased vigilance during warm rainy seasons5,29,47,48. It is important to document the number of mosquitoes collected, trap type, species identification of all specimens, and any testing performed5,47.

The number and distribution of traps used should be decided based on results of past surveillance, incidence of human cases in the area, and resource availability. Although BG Sentinel traps are best for capturing Ae. aegypti adults, they are also expensive and resource-intensive5,47,48,52. They are also prone to theft and vandalism. Oviposition traps are a good alternative and can provide adequate presence and absence data20,76,48. At a minimum, already available non-optimal traps, such as CO2 traps used for Culex spp. surveillance can be utilized. Although results cannot definitely determine the presence of Ae. aegypti, CO2 trap results can be valuable when other options are not available. By hanging the trap lower to ground, during the daytime, and near homes the likelihood to catching Ae. aegypti is increased5,47,52,53.

Legal Authority for Vector Control Response

ARS 36-601 is the nuisance statute57. This is under state authority, but is delegated to the county health departments. Locals also have some additional authority under 36-60258.

Communicable disease rules, which specify reporting requirements and control measures, are AAC R9-6-202, 203, 204, 205 and AAC R9-6-323 (dengue) and AAC R9-6-391 (WNV)59. The control measures are only related to epi investigation; mosquito control is not included at this time59.

The Role of Public Education

Aedes aegypti control is highly dependent on the actions of community members to eliminate sources of standing water where eggs and larvae can develop4,5,20,29,47,48. Many breeding sites are found in homes and backyards, and prevention and control efforts...
should emphasize reduction of water-holding containers4,5,20,29,47,48. In addition, personal protection from mosquitoes is critical in preventing bites4,5,20,29,47,48.

Public education and community engagement is a necessary part of \textit{Aedes aegypti} control, and prevention of mosquito bites4,5,20,29,47,48. Messaging will be discussed further in the following section, but key messages should address the following topics4,5,20,29,47,48.

- Source reduction: learning where mosquitoes oviposit and how to eliminate potential oviposition sites from in and outside the home4,5,20,29,47,48.
- Correct use of insect repellant or long-sleeved shirts and pants when outdoors4,5,20,29,47,48.
- Use of intact screens in windows and doors4,5,20,29,47,48.
VIII: OUTBREAK COMMUNICATIONS

Public Information During a Potential or Ongoing Outbreak:

A necessary component of successfully managing a disease outbreak or potential outbreak is communication with stakeholders29. For a chikungunya, dengue, or Zika outbreak, all community members in and around the affected area are considered stakeholders29. It is necessary to inform them about concerns over a potential or ongoing outbreak because the public must participate in vector control29. Because Aedes aegypti reside in and around homes this is a pivotal step in disease prevention5,29,47,48. The public should be kept informed in a timely manner, but steps must also be taken to avoid public panic and spread of misinformation29. There should be a close partnership between media, public health, and vector control29. In addition to a close partnership with media outlets, public health should also launch public education campaigns and have a strong social media presence29. This should be initiated when cases identified in the county, even if they are travel-associated29. Outreach and education should be scaled up if a locally acquired case is identified, and scaled down following three incubation periods (i.e. 45 days) with no newly reported cases29.

Public Education

Public education should focus on three pivotal areas:

- **Disease information**
 - Who is at risk? Anyone with exposure to mosquitoes29.
 - Emphasize the true risk of disease, as well as the appropriate statistics29.
 - How is it transmitted? Via a mosquito vector that bites during the day and lives around houses29.
 - What are the symptoms? Most commonly, fever, rash, joint pain, headache, body aches, etc29.
 - What is the treatment? No specific treatment, disease usually resolves on its own29. Dengue fever may require supportive therapy in a hospital setting20.
 - How dangerous is it? Symptoms can be severe and very unpleasant4,20. Dengue may be fatal20,21. Sometimes symptoms of chikungunya can linger after the disease resolves, such as arthritis lasting for months following illness4. Adults over 65 years of age, those with health conditions, and newborns, are at risk for more severe disease manifestations4,20,21.

- **Personal protection against mosquito vectors**
 - How do I protect myself? Always wear an insect repellant while outside29.
 - Also wear long sleeves and long pants when outdoors29.
Property and home protection against mosquito vectors

- How do I protect my home and family? Always use air conditioning instead of leaving doors or windows open, or make sure all doors and windows have intact screens.
 - Dump any standing water in or around your home. Mosquitoes can lay eggs in there! If you cannot dump it (i.e. a pool, pond, etc.) treat it with the appropriate pesticides.

Educational materials can be found through the Centers for Disease Control and Prevention, Arizona Department of Health Services, and local health department websites. The goal of public messaging is to help the public make informed decisions, encourage positive behavior change, and maintain a dialog and culture of trust between stakeholders (i.e. the public) and authorities. As chikungunya and Zika viruses are new to the Americas, and dengue to Arizona, public knowledge is likely low. A focused educational campaign is essential.

Social Media Messaging

Social media messaging is defined as any messaging shared on a social media platform. It allows for information to be dispersed to a wider audience and then shared further by interested parties. Infographics and other educational materials can be shared on Facebook, Twitter and LinkedIn pages. The more this information is shared, the wider the audience will be.

During an increase in disease cases or vector populations, relevant materials should be shared more frequently so stakeholders have timely access to relevant and factual information. By sharing up-to-date incidence information and prevention messages, social media messaging can also be used to allay fears about the emerging disease.

Messaging for Healthcare Providers

Communication with healthcare providers is critical in all phases of preparedness and response for mosquito-borne disease threats. These messages should include the signs and symptoms of chikungunya, dengue, or Zika fever, diagnostic testing, reporting, and treatment recommendations.

Messaging for Vector Control

Communication with vector control agencies in all stages of the response is necessary to share information about vector presence, epidemiologic updates, and mosquito surveillance and control guidelines. Vector control agencies should be encouraged
to conduct surveillance for *Aedes aegypti*, and develop plans for local response\(^5,47\). Surveillance findings can be shared at the state level through the Arbonet database.

Messaging for At-Risk Populations

Certain populations, including newborns, adults over 65 years of age, and persons with underlying medical conditions (high blood pressure, diabetes, and heart disease), are at higher risk for severe disease and death from arboviral disease\(^4,20,21,23,29\). Special outreach and messaging should be considered for these groups. This could include outreach through healthcare facilities to at-risk populations, as well as targeted messaging through social media.

Communication Response Scenarios

<table>
<thead>
<tr>
<th>Scenario 1: Risk for imported cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Develop educational materials including fact sheets, frequently asked questions, press releases, and talking points for chikungunya, dengue, and Zika, as well as Aedes aegypti mosquitoes</td>
</tr>
<tr>
<td>□ Inform key stakeholders about preparedness materials and guidelines</td>
</tr>
<tr>
<td>o Healthcare facilities</td>
</tr>
<tr>
<td>o Local public health partners</td>
</tr>
<tr>
<td>o State health agencies and partners</td>
</tr>
<tr>
<td>□ Begin dissemination of prevention-oriented educational materials through various formats</td>
</tr>
<tr>
<td>o Printed materials</td>
</tr>
<tr>
<td>o Websites</td>
</tr>
<tr>
<td>o Social media messaging</td>
</tr>
<tr>
<td>o Text messaging</td>
</tr>
<tr>
<td>□ Develop a strong relationship with journalists and media partners. Media opportunities can be used to educate the public and avoid spread of misinformation</td>
</tr>
<tr>
<td>□ Anticipate sensitive issues involved in the response and address them proactively. Some potential issues include:</td>
</tr>
<tr>
<td>o Safety and risks associated with the increased pesticide application near homes</td>
</tr>
<tr>
<td>o Large numbers of at-risk people inundating healthcare settings</td>
</tr>
<tr>
<td>o Cost of control measures</td>
</tr>
<tr>
<td>o Stigma issues associated with binational transmission</td>
</tr>
</tbody>
</table>
Scenario 2: Response to locally-acquired cases

- Issue local and statewide press releases to raise community awareness
 - Use a consistent spokesperson (preferably a local representative) as much as possible
 - Ensure information is released promptly
 - Use opportunity to promote source reduction and mosquito avoidance
- Increase efforts to disseminate educational materials to the public about mosquito control and disease symptoms
- Initiate consistent and frequent messaging via websites and social media platforms.
 - Ensure messaging is consistent from different partners (state and local levels)
- Intensify communications with healthcare providers. Messaging should include disease information, differential diagnoses, and reporting requirements. Provide up to date incidence rates. This may be done via hospital associations, professional groups, or network notices determined during the preparedness phase
 - Instruct healthcare providers to tell patients to AVOID mosquito contact while ill to assist in disrupting the furthering of disease transmission

Scenario 3: Recovery

- Scale down interventions to a sustainable level for disease surveillance, education dissemination, vector control, etc.
- Communicate the decreasing threat of disease transmission to the public
- Evaluate and assess the effectiveness of risk communications and communications between agencies during the response phase
IX: APPENDIX

Investigation Forms

- Arizona State Public Health Laboratory (ASPHL) Submission Form:

 Note: the above form must be included with any specimen submission to ASPHL.

Please see the following links for chikungunya, dengue, and Zika investigation forms. All case investigation forms are available on the ADHS Disease Investigation Resources webpage.

- Chikungunya case investigation form
- Dengue/Zika case investigation form

Chikungunya, dengue, and Zika morbidities are also available in MEDSIS for case investigators.

ADHS Educational Materials and Resources

- Mosquito Breeding Sites Infographic
- Know the Facts Infographic
- Zika Prevention Counseling for Clinicians
- Traveling and Going to Mexico Infographics (in English and Spanish)
- Modifiable versions of the following documents are also available by request:
 - Locally acquired case press release
 - Locally acquired case Health Alert Network notification
 - Talking points
 - Household investigation forms
 - Individual questionnaire forms
 - Adult and child consent forms for community investigations
 - Adult and immature mosquito assessment forms
ADHS and County Health Department Contacts

Arizona Department of Health Services
Office of Infectious Disease Services
Regular hours: 602-364-3676
After hours: 480-303-1919

County Public Health Communicable Disease Contact List:

<table>
<thead>
<tr>
<th>County</th>
<th>Regular Number</th>
<th>After Hours Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache County</td>
<td>(928) 333-2415</td>
<td>(928) 337-4321</td>
</tr>
<tr>
<td>Cochise County</td>
<td>(520) 432-9400</td>
<td>(800)-423-7271</td>
</tr>
<tr>
<td>Coconino County</td>
<td>(928) 679-7272</td>
<td>(928) 255-8715</td>
</tr>
<tr>
<td>Gila County</td>
<td>(928) 402-8811</td>
<td>(928) 701-1610</td>
</tr>
<tr>
<td>Graham County</td>
<td>(928) 428-1962</td>
<td>(928) 965-8921</td>
</tr>
<tr>
<td>Greenlee County</td>
<td>(928) 865-2601</td>
<td>(928) 701-7000</td>
</tr>
<tr>
<td>La Paz County</td>
<td>(928) 669-6155</td>
<td>(928) 965-4525</td>
</tr>
<tr>
<td>Maricopa County</td>
<td>(602) 506-6767</td>
<td>(602) 747-7111</td>
</tr>
<tr>
<td>Mohave County</td>
<td>(928) 753-0714</td>
<td>(928) 718-4927</td>
</tr>
<tr>
<td>Navajo County</td>
<td>(928) 524-4750</td>
<td>(928) 241-0593</td>
</tr>
<tr>
<td>Pima County</td>
<td>(520) 724-7797</td>
<td>(520) 743-7987</td>
</tr>
<tr>
<td>Pinal County</td>
<td>(520) 866-7325</td>
<td>(520) 866-6239</td>
</tr>
<tr>
<td>Santa Cruz County</td>
<td>(520) 375-7900</td>
<td>(877) 202-0586</td>
</tr>
<tr>
<td>Yavapai County</td>
<td>(928) 771-3134</td>
<td>(928) 442-5262</td>
</tr>
<tr>
<td>Yuma County</td>
<td>(928) 317-4550</td>
<td>(928) 317-4624</td>
</tr>
</tbody>
</table>
References

http://apps.who.int/iris/bitstream/10665/44188/1/9789241547871_eng.pdf

http://apps.searo.who.int/pds_docs/B4751.pdf?ua=1

22. Dengue Fever—Information and Data [Internet]. Arizona Department of Health Services [cited 2017Jun30]. Available from:

24. Dengue: Laboratory Guidance and Diagnostic Testing [Internet]. Centers for Disease Control and Prevention; 2016Jan20 [cited 2017Jun30]. Available from:
https://www.cdc.gov/dengue/clinicalallab/laboratory.html

26. Zika Virus: Information for Clinicians [Internet]. Centers for Disease Control and Prevention; 2017May5 [cited 2017May24]. Available from:

58. Abatement of Nuisances, Sources of Filth and Causes of Sickness; Civil Penalty; Property Assessment; Procedure [Internet]. Arizona State Legislature [cited 2017 Jun 30]. Available from: http://www.azleg.gov/ars/36/00602.htm

Epidemiological Profiles

Arizona Chikungunya Epi Profile 2008-2016

Total confirmed and probable cases reported in this period: 45

Cases of Chikungunya virus increased in 2014 and 2015.

Chikungunya is more commonly reported in summer months.

Chikungunya is more often found in residents of Maricopa, Pima and Yavapai Counties.

Arizona Department of Health Services
Office of Infectious Disease Services
Arizona Chikungunya Epi Profile 2008-2016

Chikungunya cases are mostly females.

- Female: 71%
- Male: 29%

Chikungunya cases are mostly Hispanic or Latino.

- Hispanic or Latino: 51%
- Black, Non-Hispanic: 27%
- Native American: 18%
- Other, Non-Hispanic: 2%
- Unknown: 2%
- Asian/Pacific Island: 2%
- White, Non-Hispanic: 0%

Chikungunya cases are mostly 20 to 44 years old.

- > 65 yr: 5
- 45-64 yr: 10
- 20-44 yr: 15
- 15-19 yr: 2
- 1-14 yr: 2
- < 1 yr: 0

Number of cases

Arizona Department of Health Services
Office of Infectious Disease Services
Arizona Dengue Epi Profile 2008-2016

Total confirmed and probable cases reported in this period: 167

Cases of dengue virus increased in 2014.

Dengue is more commonly reported in the late-fall/winter months.

Dengue is more often found in residents of Yuma, Maricopa and Pima Counties.

Arizona Department of Health Services
Office of Infectious Disease Services
Arizona Dengue Epi Profile 2008-2016
last updated 7/21/2017

Dengue cases are mostly females.

- Male: 42%
- Female: 58%

Dengue cases are mostly Hispanic or Latinos.

- Asian/Pacific Island: 5%
- Black, Non-Hispanic: 13%
- Hispanic or Latino: 53%
- Native American: 1%
- Other, Non-Hispanic: 24%
- Unknown: 0%
- White, Non-Hispanic: 1%

Dengue cases are mostly 20-44 years old.

- > 65 yr: 0
- 45-64 yr: 20
- 20-44 yr: 55
- 15-19 yr: 10
- 1-14 yr: 5
- <1 yr: 0

Number of cases

Arizona Department of Health Services
Office of Infectious Disease Services
Arizona Zika Epi Profile 2008-2016

Total confirmed and probable cases reported in this period: 56

Imported cases of Zika virus were first reported in 2016.

Zika cases peaked in August.

Imported cases of Zika are more often found in residents of Maricopa and Pima Counties.

Arizona Department of Health Services
Office of Infectious Disease Services
Arizona Zika Epi Profile 2008-2016

Zika cases are mostly females.

- Male: 25%
- Female: 75%

Zika cases are mostly Hispanic or Latinos*.

- Hispanic or Latino: 21%
- White, Non-Hispanic: 79%

* Excluding unknown race/ethnicity.

Zika cases are mostly 20-44 years old.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 65 yr</td>
<td>[]</td>
</tr>
<tr>
<td>45-64 yr</td>
<td>[]</td>
</tr>
<tr>
<td>20-44 yr</td>
<td>[]</td>
</tr>
<tr>
<td>15-19 yr</td>
<td>[]</td>
</tr>
<tr>
<td>1-14 yr</td>
<td>[]</td>
</tr>
<tr>
<td><1 yr</td>
<td>[]</td>
</tr>
</tbody>
</table>

Arizona Department of Health Services
Office of Infectious Disease Services
Mosquito Surveillance Data Submission Form Example

Note: several of the column are drop down menus. For example, column F includes WNV, DEN, CHIK, etc. Please ask ADHS Vectorborne and Zoonotic Disease Program staff for an Excel version of document, the accompanying data dictionary, or for any questions about fields.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
1	County (FIPS Code)	Submitting Agency	Reason for Trapping	Trap Set Date	Trap Set Time of Day	Trap Pick-up Date	Trap Pick-up Time of Day	Trap Location (valid address or closest cross street)	Date Collected	Type of Collection Site	GPS Lat (example: 31.00000000)	GPS Long (example: -111.00000000)	City	Zipcode	Collection Method/Trap Used	Attractant(s) Used			
2																			
3																			
4																			
5																			
6																			
7																			
8																			

<table>
<thead>
<tr>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
<th>AD</th>
<th>AE</th>
<th>AF</th>
<th>AG</th>
<th>AH</th>
<th>AI</th>
<th>AJ</th>
<th>AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Life Stage Targeted for Collection</td>
<td>Species</td>
<td>Eggs Collected</td>
<td>Larvae Collected</td>
<td>Pupae Collected</td>
<td>Adult Mosquitoes Collected</td>
<td>Females Collected</td>
<td>Males Collected</td>
<td>Adults of Unknown Sex Collected</td>
<td>Arbovirus</td>
<td>Number of Mosquitoes Tested</td>
<td>Case Status</td>
<td>Test Type</td>
<td>RAMP Value</td>
<td>FINALPCRRESULT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>