Psittacosis Infection from Feral Populations of Rosy-faced Love Birds — Maricopa County, Arizona

Anne Justice-Allen, Wildlife Veterinarian
Arizona Game and Fish Department
ajustice-allen@azgfd.gov

Craig Levy, Epizoolgist
Maricopa County Dept. Public Health
craiglevy@mail.maricopa.gov
Coauthors

- **Barbara Bodenstein**
 - USGS National Wildlife Health Center (NWHC)

- **Valerie Shearn-Boschler**
 - USGS National Wildlife Health Center (NWHC)

- **Selam Tecle**
 - Arizona Department of Health Services

- **Tammy Sylvester**
 - Maricopa County Department of Public Health
Notification: August 2013

- Arizona Game and Fish Department (AZGFD) notified of die-off of ~30 lovebirds in local community in the East Valley
- Other lovebirds in area showing signs of illness; no other species affected
- Bird carcasses sent to USGS National Wildlife Health Center (NWHC) for testing
Human Illness

• The individual that reported the lovebird die-off called back to report fever and non-response to antibiotic treatment
• Launched psittacosis investigation
Overview

- Lovebird case investigation
- Human case investigation
- Updates and the big picture
- Next steps
Lovebird Case Investigation
Rosy-faced Lovebirds

- Species: *Agapornis rosiecollis*
 - A.k.a. peach-faced lovebirds
- Small colorful parrots native to southwestern Africa
 - Invasive species in U.S.
- Popular in the pet trade
- U.S. birds captive-bred
Rosy-faced Lovebirds

- Adapted to drier climates
- Can rear up to three broods per year with 4–5 eggs per clutch
- Very social w/ large flocks
- Very noisy
- Life span: 15–25 years
Lovebirds in Maricopa County

- First seen in East Mesa in 1987.
- For 20+ years lovebird populations have been multiplying & expanding
- Rare sightings have been seen in Tucson but not believed to be established
Lovebirds in Maricopa County

- Nest in un-trimmed palm fronds (especially date palms) and hollow saguaro cavities
- Mostly live in residential areas – especially older neighborhoods with tall trees
- Food: backyard bird feeders, palm fruits, cactus fruits, mesquite & palo verde seeds, etc.
- No natural predators in MC
Rosy-faced Lovebird Sightings: 1999-2005

Yellow balloons indicate sightings of 1-10 individuals and red balloons = flocks of >10 individuals.
The red border shows the initial known boundary of the species.
Source: www.azfo.org/journal/Rosy-facedLovebird2011.html
Rosy-faced Lovebird Sightings: 1999-2010

Arizona Field Ornithologist Data:
Greater Phoenix Area Maps

Yellow balloons indicate sightings of 1-10 individuals and red balloons = flocks of >10 individuals.
The red border shows the initial known boundary of the species

Source: www.azfo.org/journal/Rosy-facedLovebird2011.html
Arizona Field Ornithologist Census

- One half-day bird census in 2011
- 61 teams scouted for lovebirds in an area approximately 24 miles in diameter
- Lovebird sightings were mapped
- 948 lovebirds were recorded in census area
- Taking into account areas with previous reports/sightings not covered in the census, lovebird numbers estimated to be at least 2500 individuals
Figure 1: Census Data Points with lovebird detections (triangles):
Light Blue = 1-5 birds, Red = 6-10 birds, Dark Blue = 11-20 birds, Green = 21-50 birds. Source: Az Field Ornithologist website.
Lovebird Clinical Findings
Necropsy Findings

- 2 juveniles and 2 adults
- Thin to emaciated
- 2 had yellow nasal discharge
Necropsy Findings

- Four RFLBs were necropsied at USGS–NWHC
- Diffusely congested lungs
- Air sacs mildly thickened
- Enlarged liver and spleen (hepatosplenomegaly)
Necropsy Findings

- Histopathologic lesions in liver & spleen
 - Multifocal coalescing hepatocellular necrosis
 - Spleens heavily infiltrated by macrophages & plasma cells

Macrophages contain small intracytoplasmic cocci staining positive with PVK & Gimenez stains (consistent with *Chlamydophila psittaci*).
Lovebird Laboratory Results

- Liver, lung, spleen, brain tested positive for *Chlamydophila psittaci* by PCR
- *C. psittaci* was isolated by culture from lung & brain at the National Veterinary Services Laboratory (NVSL) in Ames, Iowa
 - Genotype A identified
- Negative for other pathogens on differential
 - Avian influenza
 - Paramyxoviruses
 - West Nile virus
 - *Salmonella*
 - *Mycoplasma spp.*
Human Case Investigation

Craig Levy
Notification

- AZGFD was called by the same person (adult female) that reported the die-off - she had developed high fever and respiratory disease
- ~2 weeks after bird mortality event
- Public health was notified by AZGFD
- PH investigation: patient interview revealed that she cleaned up bird droppings from porch w/ leaf blower
Human Case Investigation

- Onset: September 7, 2013
- Symptoms:
 - Fever (104° F) & chills
 - Frontal headache
 - Chest pain
 - Cough
 - Myalgia
 - Sore throat
 - Drenching sweats (nighttime)
 - Tinitis
 - Fatigue
Human Case Investigation

- Visited 2 urgent care centers
- Urgent care A: no information available
- Urgent care B:
 - Chest was clear by auscultation
 - Diagnosis: urinary tract infection
 - Positive for leukocytes on urinalysis
 - Prescribed amoxicillin
- At neither urgent care was blood drawn or x-ray done
Follow-up

- No response to antibiotic therapy
- Contacted AZGFD/public health about lovebirds and illness

- Due to suspicion of psittacosis, doxycycline was recommended

- Clinical improvement and complete recovery after doxycycline started
Laboratory Results: Human Case

- Single convalescent blood sample was collected from the human case patient 20 days after initial clinical signs
- Results tested positive for *Chlamydia sp* IgG at two different laboratories
Timeline

|-----------|-----------|-----------|----------|-----------|------------|------------|
Timeline

Onset of bird mortality
Timeline

Onset of bird mortality:

- Aug 17-24
- Aug 18-24
- Aug 25-31
- Sept 1-7
- Sept 8-14
- Sept 15-21
- Sept 22-28

Resident collected bird carcasses: Aug 18-24
Timeline

Onset of bird mortality

Aug 17-24: Resident collected bird carcasses
Aug 25-31
Sept 1-7
Sept 8-14
Sept 15-21
Sept 22-28

8/25: Cleaned droppings with leaf blower
Timeline

Aug 17-24

Aug 18-24

Aug 25-31

Sept 1-7

Sept 8-14

Sept 15-21

Sept 22-28

Resident collected bird carcasses

9/7 Human case illness onset

8/25 Cleaned droppings with leaf blower

Onset of bird mortality

Human case illness onset
Onset of bird mortality

8/25 Cleaned droppings with leaf blower

9/7 Human case illness onset

9/8 Visited urgent care A
Timeline

- Aug 17-24: Resident collected bird carcasses
- Aug 18-24: Onset of bird mortality
- Aug 25-31: 8/25 Cleaned droppings with leaf blower
- Sept 1-7: 9/7 Human case illness onset
- Sept 8-14: 9/8 Visited urgent care A
- Sept 15-21: 9/9 Visited urgent care B
- Sept 22-28: Human case illness onset
Timeline

- **Aug 17-24**: Onset of bird mortality
- **Aug 18-24**: 8/25 Cleaned droppings with leaf blower
- **Aug 25-31**: Resident collected bird carcasses
- **Sept 1-7**: 9/7 Human case illness onset
- **Sept 8-14**: 9/9 Visited urgent care A
- **Sept 15-21**: 9/8 Visited urgent care B
- **Sept 22-28**: 9/10 Public health contacted individual about possible psittacosis
Timeline

Onset of bird mortality
8/25 Cleaned droppings with leaf blower
9/8 Visited urgent care A
9/10 Public health contacted individual about possible psittacosis
9/9 Visited urgent care B
9/12 Started on doxycycline per public health consult

Aug 17-24
Aug 18-24
Aug 25-31
Sept 1-7
Sept 8-14
Sept 15-21
Sept 22-28
Timeline

Aug 17-24
- Resident collected bird carcasses

Aug 18-24
- 9/7 Visited urgent care A
- Human case illness onset

Aug 25-31
- 8/25 Cleaned droppings with leaf blower

Sept 1-7
- 9/9 Visited urgent care B
- 9/8 Public health contacted individual about possible psittacosis

Sept 8-14
- 9/12 Started on doxycycline per public health consult

Sept 15-21

Sept 22-28
- 9/27 Blood drawn for serology
Background: *Chlamydophila psittaci*

- Gram negative, coccoid, obligate intracellular bacterium
- Reservoir: birds
- “Avian chlamydiosis” in birds
- A.k.a. ‘Ornithosis’ & ‘Parrot Fever’
- Most commonly identified among birds in the parrot family (psittacine birds)
Psittacosis

- *C. psittaci* in humans = psittacosis
- Zoonotic disease acquired by inhaling dried droppings or secretions from infected birds.
- Incubation period 5–19 days; can be up to 4 weeks
- Pet birds and poultry are most frequently involved in transmission to humans
- Avg ≤ 50 human cases/year in U.S.
Psittacosis in Humans

At risk:
- Bird owners
- Pet shop employees
- Zoo staff
- Poultry workers
- Veterinarians
- Slaughterhouse workers

More Susceptible:
- Weakened immune system
- Elderly
- Organ transplant patients
- HIV/AIDS
Psittacosis in Humans

Common Symptoms
- Fever & chills
- Headache
- Dry cough
- Myalgia
- Weakness/fatigue
- Rash
- Upper or lower respiratory illness
- Nausea/vomiting/diarrhea sometimes

Lab Findings
- Thrombocytopenia
- Leukopenia
- Moderately elevated liver enzymes
Psittacosis in Humans

- Psittacosis should be suspected in patients with compatible symptoms after exposure to birds and/or droppings
- Serologic testing most commonly used
- Chest X-ray may show pneumonia
- Treatment: tetracycline / doxycycline
Limitations

- Acute blood samples were never collected for the case patient at either of two urgent care centers
- Diagnosis of psittacosis was based on a single convalescent blood
- Without paired sera, you cannot confirm that there was recent infection w/ psittacosis (case classified as ‘probable’)
- Serologic tests for psittacosis cross react with other Chlamydia, such as C. pneumoniae and C. trachomatis. The patient tested positive for all three
Discussion

2013 investigation = strong case for psittacosis transmission from feral lovebirds

- *C. psittaci* confirmed as cause of lovebird mortality
- Human case had significant exposure to aerosolized bird droppings at the same site as bird die-off
- Human case had onset of psittacosis-like symptoms within incubation period
- Human case tested positive w/ high IgG titers to *Chlamydia*
Discussion

- Risk for psittacosis transmission to humans is highest for indoor pet birds due to more intimate exposures in confined spaces
- Risk is lower in outdoor open air environment
- Investigation demonstrated that infected outdoor feral lovebirds do pose a disease risk to humans
- How likely is it to occur again?
Updates & Next Steps

Laura Adams
June 17, 2014

- Homeowner in Scottsdale called AZGFD to report die-off of rosy-faced lovebirds
 - Lovebirds mingling with 7+ bird spp
 - Lovebird flock ~ 50 birds
- ~20 lovebird deaths reported
- Birds tested positive for *C. psittaci*
C. psittaci Among Wild Birds

- Little known
- First reported cases of C. psittaci among feral parrots in the U.S.
- Few reports of C. psittaci among any wild birds in US since 1950
 - Doves (1960)
 - Gulls (1986, 2002)
 - Mallards (1999)
 - Hawks (2012)
Psittacine Birds (Parrot Family)

- Psittacine birds are more likely to carry *C. psittaci* than other bird families
 - Psittacine birds —> psittacosis
- Most human cases associated with psittacine birds
 - More common as pet birds
 - Pathogenicity highly variable among strains
C. psittaci Transmission Among Birds

- Feces and nasal discharge
- Contaminated water
- Dust inhalation
- Infected carcasses
- Bites or wounds
- Parent → young
 - Feeding, contamination of nesting site
 - Vertical (low frequency)
- Ectoparasites
 - Lice, mites, flies
Avian Chlamydiosis

- Chronic infection with intermittent shedding
- Infections can be subclinical
- Clinical disease may occur/increase during times of stress
- Symptoms
 - Poor appetite
 - Ruffled feathers
 - Discharge from eyes & nose
 - Diarrhea
 - Death
Is this disease NEW to wild birds in AZ?

- ???
- **Genotype A** was identified from the birds in the August outbreak
- Genotypes fairly species-specific
Chlamydia infections in birds occur worldwide and infect a wide variety of species. Different genotypes have been isolated from different bird families, and show differences in virulence among different hosts.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Bird Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Parrot Order</td>
</tr>
<tr>
<td>B</td>
<td>Pigeons, Turkeys</td>
</tr>
<tr>
<td>C</td>
<td>Ducks, Swans, Geese</td>
</tr>
<tr>
<td>D</td>
<td>Turkeys, Egrets</td>
</tr>
<tr>
<td>E</td>
<td>Pigeons, Ratites, Turkeys</td>
</tr>
<tr>
<td>F</td>
<td>Parakeets</td>
</tr>
<tr>
<td>G</td>
<td>Raptors</td>
</tr>
<tr>
<td>WC</td>
<td>Bovine (Mammal)</td>
</tr>
<tr>
<td>M56</td>
<td>Muskrat, Snowshoe Hare</td>
</tr>
</tbody>
</table>
Potential Implications

- LOTS!!! of people feed birds
- Bird feeders attract and concentrate lots of birds
 - Congregating birds share pathogens
- Lovebirds are very popular among people feeding birds
- Lots of birds = lots of droppings
- Sooner or later, someone has to clean-up the mess
Is there a risk for community-associated psittacosis outbreaks?
Australia 1995: Community outbreak of psittacosis in a rural Australian town (Williams et al, The Lancet)

- Detected as increase in atypical pneumonia
- Identified 16 cases of psittacosis
 - Many wild parrots in adjacent forest
- NOT linked to keeping, handling, or feeding birds
- Risk factors from case-control study
 - Gardening
 - Mowing lawns
- Seroprevalence in high-risk streets: 40%
Australia 2002: Probable Psittacosis Outbreak Linked to Wild Birds (Telfer et al, EID)

- Detected as increase in severe community-acquired pneumonia
- 59 human cases
- Increased numbers of dead birds (parrots) seen in yards
- Risk factors from case-control study
 - Geography
 - Any contact (direct or indirect) with wild birds
 - Mowing lawn without a grass catcher
- Increased pneumonia rates seen among residents of high-risk area during autumn of previous years
Sweden 2013: Unusual increase of psittacosis in southern Sweden linked to wild bird exposure, January to April 2013 (Rehn et al, Eurosurveillance)

- 25 human cases
- Risk factors identified from case-control study:
 - Cleaning wild bird feeders
 - Exposure to bird droppings
 - Geographic variation
Prevention & Control
Minimize Risk of Transmission

- Raise awareness of increased risk among concentrated bird populations (i.e. bird feeders)
 - Don’t feed birds
 - Disperse seed to disperse birds
 - Feed less bird seed
Personal Protection

- Use wet disinfection methods (detergent + water) to clean bird droppings
- Use protective clothing (gloves, eyewear, mask) if aerosolization is unavoidable OR if cleaning large amounts of droppings
- Don’t handle dead birds (use shovel or gloves if necessary)
Risk from Pet Birds

- Most human infections are acquired from indoor pet birds
 - Ensure birds are negative for *C. psittaci* before purchase
 - Take sick birds to veterinarian for diagnosis and treatment
Next Steps

- Educate healthcare providers about risk of psittacosis even if no pet bird contact reported
 - Occupational risks (trimming palm trees?)
- Perform additional surveillance in bird populations
 - Lovebirds
 - Native bird species
- Use findings to guide outreach and prevention messaging to the public
Questions?